2,588 research outputs found

    A Three-dimensional Deformable Brain Atlas for DBS Targeting. I. Methodology for Atlas Creation and Artifact Reduction.

    Get PDF
    BackgroundTargeting in deep brain stimulation (DBS) relies heavily on the ability to accurately localize particular anatomic brain structures. Direct targeting of subcortical structures has been limited by the ability to visualize relevant DBS targets.Methods and resultsIn this work, we describe the development and implementation, of a methodology utilized to create a three dimensional deformable atlas for DBS surgery. This atlas was designed to correspond to the print version of the Schaltenbrand-Bailey atlas structural contours. We employed a smoothing technique to reduce artifacts inherent in the print version.ConclusionsWe present the methodology used to create a three dimensional patient specific DBS atlas which may in the future be tested for clinical utility

    A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets

    Get PDF
    OBJECTIVE: Historically, preoperative planning for functional neurosurgery has depended on the indirect localization of target brain structures using visible anatomical landmarks. However, recent technological advances in neuroimaging have permitted marked improvements in MRI-based direct target visualization, allowing for refinement of "first-pass" targeting. The authors reviewed studies relating to direct MRI visualization of the most common functional neurosurgery targets (subthalamic nucleus, globus pallidus, and thalamus) and summarize sequence specifications for the various approaches described in this literature. METHODS: The peer-reviewed literature on MRI visualization of the subthalamic nucleus, globus pallidus, and thalamus was obtained by searching MEDLINE. Publications examining direct MRI visualization of these deep brain stimulation targets were included for review. RESULTS: A variety of specialized sequences and postprocessing methods for enhanced MRI visualization are in current use. These include susceptibility-based techniques such as quantitative susceptibility mapping, which exploit the amount of tissue iron in target structures, and white matter attenuated inversion recovery, which suppresses the signal from white matter to improve the distinction between gray matter nuclei. However, evidence confirming the superiority of these sequences over indirect targeting with respect to clinical outcome is sparse. Future targeting may utilize information about functional and structural networks, necessitating the use of resting-state functional MRI and diffusion-weighted imaging. CONCLUSIONS: Specialized MRI sequences have enabled considerable improvement in the visualization of common deep brain stimulation targets. With further validation of their ability to improve clinical outcomes and advances in imaging techniques, direct visualization of targets may play an increasingly important role in preoperative planning

    Neurosurgery for brain metastasis from breast cancer

    Get PDF
    Breast cancer is the most common malignancy among women worldwide, and the main cause of death in patients with breast cancer is metastasis. Metastasis to the central nervous system occurs in 10% to 16% of patients with metastatic breast cancer, and this rate has increased because of recent advancements in systemic chemotherapy. Because of the various treatments available for brain metastasis, accurate diagnosis and evaluation for treatment are important. Magnetic resonance imaging (MRI) is one of the most reliable preoperative examinations not only for diagnosis of metastatic brain tumors but also for estimation of the molecular characteristics of the tumor based on radiographic information such as the number of lesions, solid or ring enhancement, and cyst formation. Surgical resection continues to play an important role in patients with a limited number of brain metastases and a relatively good performance status. A single brain metastasis is a good indication for surgical treatment followed by radiation therapy to obtain longer survival. Surgical removal is also considered for two or more lesions if neurological symptoms are caused by brain lesions of >3 cm with a mass effect or associated hydrocephalus. Although maximal safe resection with minimal morbidity is ideal in the surgical treatment of brain tumors, supramarginal resection can be achieved in select cases. With respect to the resection technique, en bloc resection is generally recommended to avoid leptomeningeal dissemination induced by piecemeal resection. An operating microscope, neuronavigation, and intraoperative neurophysiological monitoring are essential in modern neurosurgical procedures, including tumor resection. More recently, supporting surgical instruments have been introduced. The use of endoscopic surgery has dramatically increased, especially for intraventricular lesions and in transsphenoidal surgery. An exoscope helps neurosurgeons to comfortably operate regardless of patient positioning or anatomy. A tubular retractor can prevent damage to the surrounding brain tissue during surgery and is a useful instrument in combination with both an endoscope and exoscope. Additionally, 5-aminolevulinic acid (5-ALA) is a promising reagent for photodynamic detection of residual tumor tissue. In the near future, novel treatment options such as high-intensity focused ultrasound (HIFU), laser interstitial thermal therapy (LITT), oncolytic virus therapy, and gene therapy will be introduced

    Creation of Computerized 3D MRI-Integrated Atlases of the Human Basal Ganglia and Thalamus

    Get PDF
    Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current magnetic resonance imaging (MRI) methods. We present techniques used to create: (1) a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER); and (2) a higher resolution 3D atlas derived from a single set of manually segmented histological slices containing nuclei of the basal ganglia, thalamus, basal forebrain, and medial temporal lobe. Both atlases were integrated to a canonical MRI (Colin27) from a young male participant by manually identifying homologous landmarks. The lower resolution atlas was then warped to fit the MRI based on the identified landmarks. A pseudo-MRI representation of the high-resolution atlas was created, and a non-linear transformation was calculated in order to match the atlas to the template MRI. The atlas can then be warped to match the anatomy of Parkinson's disease surgical candidates by using 3D automated non-linear deformation methods. By way of functional validation of the atlas, the location of the sensory thalamus was correlated with stereotactic intraoperative physiological data. The position of subthalamic electrode positions in patients with Parkinson's disease was also evaluated in the atlas-integrated MRI space. Finally, probabilistic maps of subthalamic stimulation electrodes were developed, in order to allow group analysis of the location of contacts associated with the best motor outcomes. We have therefore developed, and are continuing to validate, a high-resolution computerized MRI-integrated 3D histological atlas, which is useful in functional neurosurgery, and for functional and anatomical studies of the human basal ganglia, thalamus, and basal forebrain

    Intraoperative Image Guidance in Neurosurgery: Development, Current Indications, and Future Trends

    Get PDF
    Introduction. As minimally invasive surgery becomes the standard of care in neurosurgery, it is imperative that surgeons become skilled in the use of image-guided techniques. The development of image-guided neurosurgery represents a substantial improvement in the microsurgical treatment of tumors, vascular malformations, and other intracranial lesions. Objective. There have been numerous advances in neurosurgery which have aided the neurosurgeon to achieve accurate removal of pathological tissue with minimal disruption of surrounding healthy neuronal matter including the development of microsurgical, endoscopic, and endovascular techniques. Neuronavigation systems and intraoperative imaging should improve success in cranial neurosurgery. Additional functional imaging modalities such as PET, SPECT, DTI (for fiber tracking), and fMRI can now be used in order to reduce neurological deficits resulting from surgery; however the positive long-term effect remains questionable for many indications. Method. PubMed database search using the search term “image guided neurosurgery.” More than 1400 articles were published during the last 25 years. The abstracts were scanned for prospective comparative trials. Results and Conclusion. 14 comparative trials are published. To date significant data amount show advantages in intraoperative accuracy influencing the perioperative morbidity and long-term outcome only for cerebral glioma surgery

    Visualization, navigation, augmentation. The ever-changing perspective of the neurosurgeon

    Get PDF
    Introduction: The evolution of neurosurgery coincides with the evolution of visualization and navigation. Augmented reality technologies, with their ability to bring digital information into the real environment, have the potential to provide a new, revolutionary perspective to the neurosurgeon. Research question: To provide an overview on the historical and technical aspects of visualization and navigation in neurosurgery, and to provide a systematic review on augmented reality (AR) applications in neurosurgery. Material and methods: We provided an overview on the main historical milestones and technical features of visualization and navigation tools in neurosurgery. We systematically searched PubMed and Scopus databases for AR applications in neurosurgery and specifically discussed their relationship with current visualization and navigation systems, as well as main limitations. Results: The evolution of visualization in neurosurgery is embodied by four magnification systems: surgical loupes, endoscope, surgical microscope and more recently the exoscope, each presenting independent features in terms of magnification capabilities, eye-hand coordination and the possibility to implement additional functions. In regard to navigation, two independent systems have been developed: the frame-based and the frame-less systems. The most frequent application setting for AR is brain surgery (71.6%), specifically neuro-oncology (36.2%) and microscope-based (29.2%), even though in the majority of cases AR applications presented their own visualization supports (66%). Discussion and conclusions: The evolution of visualization and navigation in neurosurgery allowed for the development of more precise instruments; the development and clinical validation of AR applications, have the potential to be the next breakthrough, making surgeries safer, as well as improving surgical experience and reducing costs
    corecore