963 research outputs found

    Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application

    Get PDF
    Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most

    Characterization of carotid artery plaques using noninvasive vascular ultrasound elastography

    Full text link
    L'athĂ©rosclĂ©rose est une maladie vasculaire complexe qui affecte la paroi des artĂšres (par l'Ă©paississement) et les lumiĂšres (par la formation de plaques). La rupture d'une plaque de l'artĂšre carotide peut Ă©galement provoquer un accident vasculaire cĂ©rĂ©bral ischĂ©mique et des complications. Bien que plusieurs modalitĂ©s d'imagerie mĂ©dicale soient actuellement utilisĂ©es pour Ă©valuer la stabilitĂ© d'une plaque, elles prĂ©sentent des limitations telles que l'irradiation, les propriĂ©tĂ©s invasives, une faible disponibilitĂ© clinique et un coĂ»t Ă©levĂ©. L'Ă©chographie est une mĂ©thode d'imagerie sĂ»re qui permet une analyse en temps rĂ©el pour l'Ă©valuation des tissus biologiques. Il est intĂ©ressant et prometteur d’appliquer une Ă©chographie vasculaire pour le dĂ©pistage et le diagnostic prĂ©coces des plaques d’artĂšre carotide. Cependant, les ultrasons vasculaires actuels identifient uniquement la morphologie d'une plaque en termes de luminositĂ© d'Ă©cho ou l’impact de cette plaque sur les caractĂ©ristiques de l’écoulement sanguin, ce qui peut ne pas ĂȘtre suffisant pour diagnostiquer l’importance de la plaque. La technique d’élastographie vasculaire non-intrusive (« noninvasive vascular elastography (NIVE) ») a montrĂ© le potentiel de dĂ©termination de la stabilitĂ© d'une plaque. NIVE peut dĂ©terminer le champ de dĂ©formation de la paroi vasculaire en mouvement d’une artĂšre carotide provoquĂ© par la pulsation cardiaque naturelle. En raison des diffĂ©rences de module de Young entre les diffĂ©rents tissus des vaisseaux, diffĂ©rents composants d’une plaque devraient prĂ©senter diffĂ©rentes dĂ©formations, caractĂ©risant ainsi la stabilitĂ© de la plaque. Actuellement, les performances et l’efficacitĂ© numĂ©rique sous-optimales limitent l’acceptation clinique de NIVE en tant que mĂ©thode rapide et efficace pour le diagnostic prĂ©coce des plaques vulnĂ©rables. Par consĂ©quent, il est nĂ©cessaire de dĂ©velopper NIVE en tant qu’outil d’imagerie non invasif, rapide et Ă©conomique afin de mieux caractĂ©riser la vulnĂ©rabilitĂ© liĂ©e Ă  la plaque. La procĂ©dure Ă  suivre pour effectuer l’analyse NIVE consiste en des Ă©tapes de formation et de post-traitement d’images. Cette thĂšse vise Ă  amĂ©liorer systĂ©matiquement la prĂ©cision de ces deux aspects de NIVE afin de faciliter la prĂ©diction de la vulnĂ©rabilitĂ© de la plaque carotidienne. Le premier effort de cette thĂšse a Ă©tĂ© dĂ©diĂ© Ă  la formation d'images (Chapitre 5). L'imagerie par oscillations transversales a Ă©tĂ© introduite dans NIVE. Les performances de l’imagerie par oscillations transversales couplĂ©es Ă  deux estimateurs de contrainte fondĂ©s sur un modĂšle de dĂ©formation fine, soit l’ « affine phase-based estimator (APBE) » et le « Lagrangian speckle model estimator (LSME) », ont Ă©tĂ© Ă©valuĂ©es. Pour toutes les Ă©tudes de simulation et in vitro de ce travail, le LSME sans imagerie par oscillation transversale a surperformĂ© par rapport Ă  l'APBE avec imagerie par oscillations transversales. NĂ©anmoins, des estimations de contrainte principales comparables ou meilleures pourraient ĂȘtre obtenues avec le LSME en utilisant une imagerie par oscillations transversales dans le cas de structures tissulaires complexes et hĂ©tĂ©rogĂšnes. Lors de l'acquisition de signaux ultrasonores pour la formation d'images, des mouvements hors du plan perpendiculaire au plan de balayage bidimensionnel (2-D) existent. Le deuxiĂšme objectif de cette thĂšse Ă©tait d'Ă©valuer l'influence des mouvements hors plan sur les performances du NIVE 2-D (Chapitre 6). À cette fin, nous avons conçu un dispositif expĂ©rimental in vitro permettant de simuler des mouvements hors plan de 1 mm, 2 mm et 3 mm. Les rĂ©sultats in vitro ont montrĂ© plus d'artefacts d'estimation de contrainte pour le LSME avec des amplitudes croissantes de mouvements hors du plan principal de l’image. MalgrĂ© tout, nous avons nĂ©anmoins obtenu des estimations de dĂ©formations robustes avec un mouvement hors plan de 2.0 mm (coefficients de corrĂ©lation supĂ©rieurs Ă  0.85). Pour un jeu de donnĂ©es cliniques de 18 participants prĂ©sentant une stĂ©nose de l'artĂšre carotide, nous avons proposĂ© d'utiliser deux jeux de donnĂ©es d'analyses sur la mĂȘme plaque carotidienne, soit des images transversales et longitudinales, afin de dĂ©duire les mouvements hors plan (qui se sont avĂ©rĂ©s de 0.25 mm Ă  1.04 mm). Les rĂ©sultats cliniques ont montrĂ© que les estimations de dĂ©formations restaient reproductibles pour toutes les amplitudes de mouvement, puisque les coefficients de corrĂ©lation inter-images Ă©taient supĂ©rieurs Ă  0.70 et que les corrĂ©lations croisĂ©es normalisĂ©es entre les images radiofrĂ©quences Ă©taient supĂ©rieures Ă  0.93, ce qui a permis de dĂ©montrer une plus grande confiance lors de l'analyse de jeu de donnĂ©es cliniques de plaques carotides Ă  l'aide du LSME. Enfin, en ce qui concerne le post-traitement des images, les algorithmes NIVE doivent estimer les dĂ©formations des parois des vaisseaux Ă  partir d’images reconstituĂ©es dans le but d’identifier les tissus mous et durs. Ainsi, le dernier objectif de cette thĂšse Ă©tait de dĂ©velopper un algorithme d'estimation de contrainte avec une rĂ©solution de la taille d’un pixel ainsi qu'une efficacitĂ© de calcul Ă©levĂ©e pour l'amĂ©lioration de la prĂ©cision de NIVE (Chapitre 7). Nous avons proposĂ© un estimateur de dĂ©formation de modĂšle fragmentĂ© (SMSE) avec lequel le champ de dĂ©formation dense est paramĂ©trĂ© avec des descriptions de transformĂ©es en cosinus discret, gĂ©nĂ©rant ainsi des composantes de dĂ©formations affines (dĂ©formations axiales et latĂ©rales et en cisaillement) sans opĂ©ration mathĂ©matique de dĂ©rivĂ©es. En comparant avec le LSME, le SMSE a rĂ©duit les erreurs d'estimation lors des tests de simulations, ainsi que pour les mesures in vitro et in vivo. De plus, la faible mise en oeuvre de la mĂ©thode SMSE rĂ©duit de 4 Ă  25 fois le temps de traitement par rapport Ă  la mĂ©thode LSME pour les simulations, les Ă©tudes in vitro et in vivo, ce qui pourrait permettre une implĂ©mentation possible de NIVE en temps rĂ©el.Atherosclerosis is a complex vascular disease that affects artery walls (by thickening) and lumens (by plaque formation). The rupture of a carotid artery plaque may also induce ischemic stroke and complications. Despite the use of several medical imaging modalities to evaluate the stability of a plaque, they present limitations such as irradiation, invasive property, low clinical availability and high cost. Ultrasound is a safe imaging method with a real time capability for assessment of biological tissues. It is clinically used for early screening and diagnosis of carotid artery plaques. However, current vascular ultrasound technologies only identify the morphology of a plaque in terms of echo brightness or the impact of the vessel narrowing on flow properties, which may not be sufficient for optimum diagnosis. Noninvasive vascular elastography (NIVE) has been shown of interest for determining the stability of a plaque. Specifically, NIVE can determine the strain field of the moving vessel wall of a carotid artery caused by the natural cardiac pulsation. Due to Young’s modulus differences among different vessel tissues, different components of a plaque can be detected as they present different strains thereby potentially helping in characterizing the plaque stability. Currently, sub-optimum performance and computational efficiency limit the clinical acceptance of NIVE as a fast and efficient method for the early diagnosis of vulnerable plaques. Therefore, there is a need to further develop NIVE as a non-invasive, fast and low computational cost imaging tool to better characterize the plaque vulnerability. The procedure to perform NIVE analysis consists in image formation and image post-processing steps. This thesis aimed to systematically improve the accuracy of these two aspects of NIVE to facilitate predicting carotid plaque vulnerability. The first effort of this thesis has been targeted on improving the image formation (Chapter 5). Transverse oscillation beamforming was introduced into NIVE. The performance of transverse oscillation imaging coupled with two model-based strain estimators, the affine phase-based estimator (APBE) and the Lagrangian speckle model estimator (LSME), were evaluated. For all simulations and in vitro studies, the LSME without transverse oscillation imaging outperformed the APBE with transverse oscillation imaging. Nonetheless, comparable or better principal strain estimates could be obtained with the LSME using transverse oscillation imaging in the case of complex and heterogeneous tissue structures. During the acquisition of ultrasound signals for image formation, out-of-plane motions which are perpendicular to the two-dimensional (2-D) scan plane are existing. The second objective of this thesis was to evaluate the influence of out-of-plane motions on the performance of 2-D NIVE (Chapter 6). For this purpose, we designed an in vitro experimental setup to simulate out-of-plane motions of 1 mm, 2 mm and 3 mm. The in vitro results showed more strain estimation artifacts for the LSME with increasing magnitudes of out-of-plane motions. Even so, robust strain estimations were nevertheless obtained with 2.0 mm out-of-plane motion (correlation coefficients higher than 0.85). For a clinical dataset of 18 participants with carotid artery stenosis, we proposed to use two datasets of scans on the same carotid plaque, one cross-sectional and the other in a longitudinal view, to deduce the out-of-plane motions (estimated to be ranging from 0.25 mm to 1.04 mm). Clinical results showed that strain estimations remained reproducible for all motion magnitudes since inter-frame correlation coefficients were higher than 0.70, and normalized cross-correlations between radiofrequency images were above 0.93, which indicated that confident motion estimations can be obtained when analyzing clinical dataset of carotid plaques using the LSME. Finally, regarding the image post-processing component of NIVE algorithms to estimate strains of vessel walls from reconstructed images with the objective of identifying soft and hard tissues, we developed a strain estimation method with a pixel-wise resolution as well as a high computation efficiency for improving NIVE (Chapter 7). We proposed a sparse model strain estimator (SMSE) for which the dense strain field is parameterized with Discrete Cosine Transform descriptions, thereby deriving affine strain components (axial and lateral strains and shears) without mathematical derivative operations. Compared with the LSME, the SMSE reduced estimation errors in simulations, in vitro and in vivo tests. Moreover, the sparse implementation of the SMSE reduced the processing time by a factor of 4 to 25 compared with the LSME based on simulations, in vitro and in vivo results, which is suggesting a possible implementation of NIVE in real time

    MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment.

    Get PDF
    Carotid atherosclerotic plaques are a major cause of ischaemic stroke. The biomechanical environment to which the arterial wall and plaque is subjected to plays an important role in the initiation, progression and rupture of carotid plaques. MRI is frequently used to characterize the morphology of a carotid plaque, but new developments in MRI enable more functional assessment of carotid plaques. In this review, MRI based biomechanical parameters are evaluated on their current status, clinical applicability, and future developments. Blood flow related biomechanical parameters, including endothelial wall shear stress and oscillatory shear index, have been shown to be related to plaque formation. Deriving these parameters directly from MRI flow measurements is feasible and has great potential for future carotid plaque development prediction. Blood pressure induced stresses in a plaque may exceed the tissue strength, potentially leading to plaque rupture. Multi-contrast MRI based stress calculations in combination with tissue strength assessment based on MRI inflammation imaging may provide a plaque stress-strength balance that can be used to assess the plaque rupture risk potential. Direct plaque strain analysis based on dynamic MRI is already able to identify local plaque displacement during the cardiac cycle. However, clinical evidence linking MRI strain to plaque vulnerability is still lacking. MRI based biomechanical parameters may lead to improved assessment of carotid plaque development and rupture risk. However, better MRI systems and faster sequences are required to improve the spatial and temporal resolution, as well as increase the image contrast and signal-to-noise ratio.This is the author accepted manuscript. The final version is available from Schattauer via http://dx.doi.org/10.1160/TH15-09-071

    Characterization of Carotid Plaques with Ultrasound Non-Invasive Vascular Elastography (NIVE) : Feasibility and Correlation with High-Resolution Magnetic Resonance Imaging

    Full text link
    L’accident vasculaire cĂ©rĂ©bral (AVC) est une cause principale de dĂ©cĂšs et de morbiditĂ© dans le monde; une bonne partie des AVC est causĂ©e par la plaque d’athĂ©rosclĂ©rose carotidienne. La prĂ©vention de l’AVC chez les patients ayant une plaque carotidienne demeure controversĂ©e, vu les risques et bĂ©nĂ©fices ambigus associĂ©s au traitement chirurgical ou mĂ©dical. Plusieurs mĂ©thodes d’imagerie ont Ă©tĂ© dĂ©veloppĂ©es afin d’étudier la plaque vulnĂ©rable (dont le risque est Ă©levĂ©), mais aucune n’est suffisamment validĂ©e ou accessible pour permettre une utilisation comme outil de dĂ©pistage. L’élastographie non-invasive vasculaire (NIVE) est une technique nouvelle qui cartographie les dĂ©formations (Ă©lasticitĂ©) de la plaque afin de dĂ©tecter les plaque vulnĂ©rables; cette technique n’est pas encore validĂ©e cliniquement. Le but de ce projet est d’évaluer la capacitĂ© de NIVE de caractĂ©riser la composition de la plaque et sa vulnĂ©rabilitĂ© in vivo chez des patients ayant des plaques sĂ©vĂšres carotidiennes, en utilisant comme Ă©talon de rĂ©fĂ©rence, l’imagerie par rĂ©sonance magnĂ©tique (IRM) Ă  haute-rĂ©solution. Afin de poursuivre cette Ă©tude, une connaissance accrue de l’AVC, l’athĂ©rosclĂ©rose, la plaque vulnĂ©rable, ainsi que des techniques actuelles d’imagerie de la plaque carotidienne, est requise. Trente-et-un sujets ont Ă©tĂ© examinĂ©s par NIVE par ultrasonographie et IRM Ă  haute-rĂ©solution. Sur 31 plaques, 9 Ă©taient symptomatiques, 17 contenaient des lipides, et 7 Ă©taient vulnĂ©rables selon l’IRM. Les dĂ©formations Ă©taient significativement plus petites chez les plaques contenant des lipides, avec une sensibilitĂ© Ă©levĂ©e et une spĂ©cificitĂ© modĂ©rĂ©e. Une association quadratique entre la dĂ©formation et la quantitĂ© de lipide a Ă©tĂ© trouvĂ©e. Les dĂ©formations ne pouvaient pas distinguer les plaques vulnĂ©rables ou symptomatiques. En conclusion, NIVE par ultrasonographie est faisable chez des patients ayant des stĂ©noses carotidiennes significatives et peut dĂ©tecter la prĂ©sence d’un coeur lipidique. Des Ă©tudes supplĂ©mentaires de progression de la plaque avec NIVE sont requises afin d’identifier les plaques vulnĂ©rables.Stroke is a leading cause of death and morbidity worldwide, and a significant proportion of strokes are caused by carotid atherosclerotic plaque rupture. Prevention of stroke in patients with carotid plaque poses a significant challenge to physicians, as risks and benefits of surgical or medical treatments remain equivocal. Many imaging techniques have been developed to identify and study vulnerable (high-risk) atherosclerotic plaques, but none is sufficiently validated or accessible for population screening. Non-invasive vascular elastography (NIVE) is a novel ultrasonic technique that maps carotid plaque strain (elasticity) characteristics to detect its vulnerability; it has not been clinically validated yet. The goal of this project is to evaluate the ability of ultrasound NIVE strain analysis to characterize carotid plaque composition and vulnerability in vivo in patients with significant plaque burden, as determined by the reference standard, high resolution MRI. To undertake this study, a thorough understanding of stroke, atherosclerosis, vulnerable plaque, and current non-invasive carotid plaque imaging techniques is required. Thirty-one subjects underwent NIVE and high-resolution MRI of internal carotid arteries. Of 31 plaques, 9 were symptomatic, 17 contained lipid and 7 were vulnerable on MRI. Strains were significantly lower in plaques containing a lipid core compared to those without lipid, with high sensitivity and moderate specificity. A quadratic fit was found between strain and lipid content. Strains did not discriminate symptomatic patients or vulnerable plaques. In conclusion, ultrasound NIVE is feasible in patients with significant carotid stenosis and can detect the presence of a lipid core. Further studies of plaque progression with NIVE are required to identify vulnerable plaques

    International Union of Angiology (IUA) consensus paper on imaging strategies in atherosclerotic carotid artery imaging: From basic strategies to advanced approaches

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of mortality and disability in developed countries. According to WHO, an estimated 17.9 million people died from CVDs in 2019, representing 32% of all global deaths. Of these deaths, 85% were due to major adverse cardiac and cerebral events. Early detection and care for individuals at high risk could save lives, alleviate suffering, and diminish economic burden associated with these diseases. Carotid artery disease is not only a well-established risk factor for ischemic stroke, contributing to 10%–20% of strokes or transient ischemic attacks (TIAs), but it is also a surrogate marker of generalized atherosclerosis and a predictor of cardiovascular events. In addition to diligent history, physical examination, and laboratory detection of metabolic abnormalities leading to vascular changes, imaging of carotid arteries adds very important information in assessing stroke and overall cardiovascular risk. Spanning from carotid intima-media thickness (IMT) measurements in arteriopathy to plaque burden, morphology and biology in more advanced disease, imaging of carotid arteries could help not only in stroke prevention but also in ameliorating cardiovascular events in other territories (e.g. in the coronary arteries). While ultrasound is the most widely available and affordable imaging methods, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), their combination and other more sophisticated methods have introduced novel concepts in detection of carotid plaque characteristics and risk assessment of stroke and other cardiovascular events. However, in addition to robust progress in usage of these methods, all of them have limitations which should be taken into account. The main purpose of this consensus document is to discuss pros but also cons in clinical, epidemiological and research use of all these techniques

    Carotid artery contrast enhanced ultrasound

    Get PDF

    Intravascular Ultrasound

    Get PDF
    Intravascular ultrasound (IVUS) is a cardiovascular imaging technology using a specially designed catheter with a miniaturized ultrasound probe for the assessment of vascular anatomy with detailed visualization of arterial layers. Over the past two decades, this technology has developed into an indispensable tool for research and clinical practice in cardiovascular medicine, offering the opportunity to gather diagnostic information about the process of atherosclerosis in vivo, and to directly observe the effects of various interventions on the plaque and arterial wall. This book aims to give a comprehensive overview of this rapidly evolving technique from basic principles and instrumentation to research and clinical applications with future perspectives

    Carotid artery contrast enhanced ultrasound

    Get PDF
    • 

    corecore