148 research outputs found

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    FlexTDOA : Robust and Scalable Time-Difference of Arrival Localization Using Ultra-Wideband Devices

    Get PDF
    In this paper, we propose FlexTDOA, an indoor localization method using ultra-wideband (UWB) radios, and we demonstrate its performance in a functional system. Our method uses time-difference of arrival (TDOA) localization so that the user device remains passive and is able to compute its location simply by listening to the communication between the fixed anchors, ensuring the scalability of the system. The anchors communicate using a custom and flexible time-division multiple-access (TDMA) scheme in which time is divided in slots. In each time slot, one anchor interrogates one or more anchors which respond in the same slot. The anchors do not need to have their clocks synchronized. We implemented FlexTDOA on in-house designed hardware using a commercial UWB module. We evaluate the localization accuracy of FlexTDOA with different system parameters such as the number of responses, the order of responses, and the number of anchors. We simulate and evaluate the effect of the physical speed of the tag on the choice of optimum system parameters. We also compare FlexTDOA against the classic TDOA approach and range-based localization in a deployment of ten anchors and one tag, both with and without obstructions. Results show that FlexTDOA achieves the highest localization accuracy in most of the scenarios, with up to 38% reduction in the localization error compared to the classic approach.Peer reviewe

    Robust, Energy-Efficient, and Scalable Indoor Localization with Ultra-Wideband Technology

    Get PDF
    Ultra-wideband (UWB) technology has been rediscovered in recent years for its potential to provide centimeter-level accuracy in GNSS-denied environments. The large-scale adoption of UWB chipsets in smartphones brings demanding needs on the energy-efficiency, robustness, scalability, and crossdevice compatibility of UWB localization systems. This thesis investigates, characterizes, and proposes several solutions for these pressing concerns. First, we investigate the impact of different UWB device architectures on the energy efficiency, accuracy, and cross-platform compatibility of UWB localization systems. The thesis provides the first comprehensive comparison between the two types of physical interfaces (PHYs) defined in the IEEE 802.15.4 standard: with low and high pulse repetition frequency (LRP and HRP, respectively). In the comparison, we focus not only on the ranging/localization accuracy but also on the energy efficiency of the PHYs. We found that the LRP PHY consumes between 6.4–100 times less energy than the HRP PHY in the evaluated devices. On the other hand, distance measurements acquired with the HRP devices had 1.23–2 times lower standard deviation than those acquired with the LRP devices. Therefore, the HRP PHY might be more suitable for applications with high-accuracy constraints than the LRP PHY. The impact of different UWB PHYs also extends to the application layer. We found that ranging or localization error-mitigation techniques are frequently trained and tested on only one device and would likely not generalize to different platforms. To this end, we identified four challenges in developing platform-independent error-mitigation techniques in UWB localization, which can guide future research in this direction. Besides the cross-platform compatibility, localization error-mitigation techniques raise another concern: most of them rely on extensive data sets for training and testing. Such data sets are difficult and expensive to collect and often representative only of the precise environment they were collected in. We propose a method to detect and mitigate non-line-of-sight (NLOS) measurements that does not require any manually-collected data sets. Instead, the proposed method automatically labels incoming distance measurements based on their distance residuals during the localization process. The proposed detection and mitigation method reduces, on average, the mean and standard deviation of localization errors by 2.2 and 5.8 times, respectively. UWB and Bluetooth Low Energy (BLE) are frequently integrated in localization solutions since they can provide complementary functionalities: BLE is more energy-efficient than UWB but it can provide location estimates with only meter-level accuracy. On the other hand, UWB can localize targets with centimeter-level accuracy albeit with higher energy consumption than BLE. In this thesis, we provide a comprehensive study of the sources of instabilities in received signal strength (RSS) measurements acquired with BLE devices. The study can be used as a starting point for future research into BLE-based ranging techniques, as well as a benchmark for hybrid UWB–BLE localization systems. Finally, we propose a flexible scheduling scheme for time-difference of arrival (TDOA) localization with UWB devices. Unlike in previous approaches, the reference anchor and the order of the responding anchors changes every time slot. The flexible anchor allocation makes the system more robust to NLOS propagation than traditional approaches. In the proposed setup, the user device is a passive listener which localizes itself using messages received from the anchors. Therefore, the system can scale with an unlimited number of devices and can preserve the location privacy of the user. The proposed method is implemented on custom hardware using a commercial UWB chipset. We evaluated the proposed method against the standard TDOA algorithm and range-based localization. In line of sight (LOS), the proposed TDOA method has a localization accuracy similar to the standard TDOA algorithm, down to a 95% localization error of 15.9 cm. In NLOS, the proposed TDOA method outperforms the classic TDOA method in all scenarios, with a reduction of up to 16.4 cm in the localization error.Cotutelle -yhteisväitöskirj

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modied our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the eld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders

    Get PDF
    The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders

    HJIC

    Get PDF

    Wearables for Movement Analysis in Healthcare

    Get PDF
    Quantitative movement analysis is widely used in clinical practice and research to investigate movement disorders objectively and in a complete way. Conventionally, body segment kinematic and kinetic parameters are measured in gait laboratories using marker-based optoelectronic systems, force plates, and electromyographic systems. Although movement analyses are considered accurate, the availability of specific laboratories, high costs, and dependency on trained users sometimes limit its use in clinical practice. A variety of compact wearable sensors are available today and have allowed researchers and clinicians to pursue applications in which individuals are monitored in their homes and in community settings within different fields of study, such movement analysis. Wearable sensors may thus contribute to the implementation of quantitative movement analyses even during out-patient use to reduce evaluation times and to provide objective, quantifiable data on the patients’ capabilities, unobtrusively and continuously, for clinical purposes

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    • …
    corecore