46 research outputs found

    Optimization of Fast-Decodable Full-Rate STBC with Non-Vanishing Determinants

    Full text link
    Full-rate STBC (space-time block codes) with non-vanishing determinants achieve the optimal diversity-multiplexing tradeoff but incur high decoding complexity. To permit fast decoding, Sezginer, Sari and Biglieri proposed an STBC structure with special QR decomposition characteristics. In this paper, we adopt a simplified form of this fast-decodable code structure and present a new way to optimize the code analytically. We show that the signal constellation topology (such as QAM, APSK, or PSK) has a critical impact on the existence of non-vanishing determinants of the full-rate STBC. In particular, we show for the first time that, in order for APSK-STBC to achieve non-vanishing determinant, an APSK constellation topology with constellation points lying on square grid and ring radius \sqrt{m^2+n^2} (m,n\emph{\emph{integers}}) needs to be used. For signal constellations with vanishing determinants, we present a methodology to analytically optimize the full-rate STBC at specific constellation dimension.Comment: Accepted by IEEE Transactions on Communication

    Asymptotically-Optimal, Fast-Decodable, Full-Diversity STBCs

    Full text link
    For a family/sequence of STBCs C1,C2,…\mathcal{C}_1,\mathcal{C}_2,\dots, with increasing number of transmit antennas NiN_i, with rates RiR_i complex symbols per channel use (cspcu), the asymptotic normalized rate is defined as lim⁑iβ†’βˆžRiNi\lim_{i \to \infty}{\frac{R_i}{N_i}}. A family of STBCs is said to be asymptotically-good if the asymptotic normalized rate is non-zero, i.e., when the rate scales as a non-zero fraction of the number of transmit antennas, and the family of STBCs is said to be asymptotically-optimal if the asymptotic normalized rate is 1, which is the maximum possible value. In this paper, we construct a new class of full-diversity STBCs that have the least ML decoding complexity among all known codes for any number of transmit antennas N>1N>1 and rates R>1R>1 cspcu. For a large set of (R,N)\left(R,N\right) pairs, the new codes have lower ML decoding complexity than the codes already available in the literature. Among the new codes, the class of full-rate codes (R=NR=N) are asymptotically-optimal and fast-decodable, and for N>5N>5 have lower ML decoding complexity than all other families of asymptotically-optimal, fast-decodable, full-diversity STBCs available in the literature. The construction of the new STBCs is facilitated by the following further contributions of this paper:(i) For g>1g > 1, we construct gg-group ML-decodable codes with rates greater than one cspcu. These codes are asymptotically-good too. For g>2g>2, these are the first instances of gg-group ML-decodable codes with rates greater than 11 cspcu presented in the literature. (ii) We construct a new class of fast-group-decodable codes for all even number of transmit antennas and rates 1<R≀5/41 < R \leq 5/4.(iii) Given a design with full-rank linear dispersion matrices, we show that a full-diversity STBC can be constructed from this design by encoding the real symbols independently using only regular PAM constellations.Comment: 16 pages, 3 tables. The title has been changed.The class of asymptotically-good multigroup ML decodable codes has been extended to a broader class of number of antennas. New fast-group-decodable codes and asymptotically-optimal, fast-decodable codes have been include
    corecore