59 research outputs found

    Linear kernels for outbranching problems in sparse digraphs

    Full text link
    In the kk-Leaf Out-Branching and kk-Internal Out-Branching problems we are given a directed graph DD with a designated root rr and a nonnegative integer kk. The question is to determine the existence of an outbranching rooted at rr that has at least kk leaves, or at least kk internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)O(k^2) vertices are known on general graphs. In this work we show that kk-Leaf Out-Branching admits a kernel with O(k)O(k) vertices on H\mathcal{H}-minor-free graphs, for any fixed family of graphs H\mathcal{H}, whereas kk-Internal Out-Branching admits a kernel with O(k)O(k) vertices on any graph class of bounded expansion.Comment: Extended abstract accepted for IPEC'15, 27 page

    Hitting forbidden minors: Approximation and Kernelization

    Get PDF
    We study a general class of problems called F-deletion problems. In an F-deletion problem, we are asked whether a subset of at most kk vertices can be deleted from a graph GG such that the resulting graph does not contain as a minor any graph from the family F of forbidden minors. We obtain a number of algorithmic results on the F-deletion problem when F contains a planar graph. We give (1) a linear vertex kernel on graphs excluding tt-claw K1,tK_{1,t}, the star with tt leves, as an induced subgraph, where tt is a fixed integer. (2) an approximation algorithm achieving an approximation ratio of O(log3/2OPT)O(\log^{3/2} OPT), where OPTOPT is the size of an optimal solution on general undirected graphs. Finally, we obtain polynomial kernels for the case when F contains graph θc\theta_c as a minor for a fixed integer cc. The graph θc\theta_c consists of two vertices connected by cc parallel edges. Even though this may appear to be a very restricted class of problems it already encompasses well-studied problems such as {\sc Vertex Cover}, {\sc Feedback Vertex Set} and Diamond Hitting Set. The generic kernelization algorithm is based on a non-trivial application of protrusion techniques, previously used only for problems on topological graph classes

    Parameterized algorithms of fundamental NP-hard problems: a survey

    Get PDF
    Parameterized computation theory has developed rapidly over the last two decades. In theoretical computer science, it has attracted considerable attention for its theoretical value and significant guidance in many practical applications. We give an overview on parameterized algorithms for some fundamental NP-hard problems, including MaxSAT, Maximum Internal Spanning Trees, Maximum Internal Out-Branching, Planar (Connected) Dominating Set, Feedback Vertex Set, Hyperplane Cover, Vertex Cover, Packing and Matching problems. All of these problems have been widely applied in various areas, such as Internet of Things, Wireless Sensor Networks, Artificial Intelligence, Bioinformatics, Big Data, and so on. In this paper, we are focused on the algorithms’ main idea and algorithmic techniques, and omit the details of them

    Vertex Cover Kernelization Revisited: Upper and Lower Bounds for a Refined Parameter

    Get PDF
    An important result in the study of polynomial-time preprocessing shows that there is an algorithm which given an instance (G,k) of Vertex Cover outputs an equivalent instance (G',k') in polynomial time with the guarantee that G' has at most 2k' vertices (and thus O((k')^2) edges) with k' <= k. Using the terminology of parameterized complexity we say that k-Vertex Cover has a kernel with 2k vertices. There is complexity-theoretic evidence that both 2k vertices and Theta(k^2) edges are optimal for the kernel size. In this paper we consider the Vertex Cover problem with a different parameter, the size fvs(G) of a minimum feedback vertex set for G. This refined parameter is structurally smaller than the parameter k associated to the vertex covering number vc(G) since fvs(G) <= vc(G) and the difference can be arbitrarily large. We give a kernel for Vertex Cover with a number of vertices that is cubic in fvs(G): an instance (G,X,k) of Vertex Cover, where X is a feedback vertex set for G, can be transformed in polynomial time into an equivalent instance (G',X',k') such that |V(G')| <= 2k and |V(G')| <= O(|X'|^3). A similar result holds when the feedback vertex set X is not given along with the input. In sharp contrast we show that the Weighted Vertex Cover problem does not have a polynomial kernel when parameterized by the cardinality of a given vertex cover of the graph unless NP is in coNP/poly and the polynomial hierarchy collapses to the third level.Comment: Published in "Theory of Computing Systems" as an Open Access publicatio

    Crown Reductions and Decompositions: Theoretical Results and Practical Methods

    Get PDF
    Two kernelization schemes for the vertex cover problem, an NP-hard problem in graph theory, are compared. The first, crown reduction, is based on the identification of a graph structure called a crown and is relatively new while the second, LP-kernelization has been used for some time. A proof of the crown reduction algorithm is presented, the algorithm is implemented and theorems are proven concerning its performance. Experiments are conducted comparing the performance of crown reduction and LP- kernelization on real world biological graphs. Next, theorems are presented that provide a logical connection between the crown structure and LP-kernelization. Finally, an algorithm is developed for decomposing a graph into two subgraphs: one that is a crown and one that is crown free

    Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs

    Get PDF
    We develop two different methods to achieve subexponential time parameterized algorithms for problems on sparse directed graphs. We exemplify our approaches with two well studied problems. For the first problem, {\sc kk-Leaf Out-Branching}, which is to find an oriented spanning tree with at least kk leaves, we obtain an algorithm solving the problem in time 2O(klogk)n+nO(1)2^{O(\sqrt{k} \log k)} n+ n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed graph HH as a minor. For the special case when the input directed graph is planar, the running time can be improved to 2O(k)n+nO(1)2^{O(\sqrt{k})}n + n^{O(1)}. The second example is a generalization of the {\sc Directed Hamiltonian Path} problem, namely {\sc kk-Internal Out-Branching}, which is to find an oriented spanning tree with at least kk internal vertices. We obtain an algorithm solving the problem in time 2O(klogk)+nO(1)2^{O(\sqrt{k} \log k)} + n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed apex graph HH as a minor. Finally, we observe that for any ϵ>0\epsilon>0, the {\sc kk-Directed Path} problem is solvable in time O((1+ϵ)knf(ϵ))O((1+\epsilon)^k n^{f(\epsilon)}), where ff is some function of \ve. Our methods are based on non-trivial combinations of obstruction theorems for undirected graphs, kernelization, problem specific combinatorial structures and a layering technique similar to the one employed by Baker to obtain PTAS for planar graphs
    corecore