17 research outputs found

    An Improved DC Motor Position Control Using Differential Evolution Based Structure Specified H∞ Robust Controller

    Get PDF
    Traditional synthesis of an H∞ controller usually results in a very high order of controller that is not practical for a low-cost embedded system such as a microcontroller. This paper presents a synthesis method of a low-order H∞ robust controller to control the position of a dc motor. The synthesis employed Differential Evolution optimization to find a controller that guarantees robust stability performance and robust stability against system perturbation. A second-order PID structure was chosen for the synthesized controller because this structure is simple and very famous. The proposed controller performance under uncertainties was compared to some other controllers. The first was compared with a conventional PID controller that had been finely tuned using the trial and error method in the nominal transfer function of the plant. Secondly, the proposed controller was compared with a full-order H∞ robust controller generated from a traditional synthesis method. Thirdly, the proposed controller was compared with another structure specified H∞ robust controller generated differently from the proposed method. All of the controllers result in a stable response. However, the proposed controller gives a better response in terms of overshoot and response time

    Analysis of magnetic-coupling effect on the performances of 2DoF direct-drive induction motors

    Get PDF

    Analisis Bibliometrik Riset PID Speed Control pada Rentang 2013-2022

    Get PDF
    Penelitian ini bertujuan untuk memberikan gambaran terkait perkembangan riset PID speed control dalam satu dekade terakhir (2013-2022). Metode yang digunakan dalam artikel ini adalah analisis bibliometrik dengan menggunakan VOSviewer, Tableau Public dan Rstudio Biblioshiny. Database yang digunakan adalah Scopus. Dengan kata kunci pencarian “PI* speed control*”, diperoleh 258 dokumen publikasi yang terdiri dari 105 artikel jurnal dan 153 artikel prosiding yang menjadi dataset utama yang digunakan dalam artikel ini. Dari hasil analisis terlihat bahwa jumlah publikasi riset PID speed control berfluktuasi setiap tahunnya. Top 10 dokumen dengan jumlah sitasi terbanyak juga dibahas dalam artikel ini. Author paling produktif dan author paling berpengaruh dalam riset PID speed control terungkap yaitu Verma, A dan Choi, H.H. Topik yang sedang tren dan menjadi hotspot dalam riset PID speed control adalah particle swarm optimization, direct torque control, extended Kalman filter, current predictive control, sliding mode control, model predictive control dan disturbance observer. Akhirnya, artikel ini dapat memberikan informasi yang bermanfaat bagi para peneliti empiris untuk menentukan kebaruan dan research gap untuk penelitian selanjutnya dalam tema utama PID speed control

    Repairing and commissioning of an AC motor speed controller for a centrifugal pump

    Get PDF
    A centrifugal pump was installed in 1984 in the Fluid Mechanics Laboratory of Mechanical Engineering Department of Rajshahi University of Engineering & Technology. The motor of the centrifugal pump was dc motor and was not working. It could not be commissioned for a long time because of the damaged speed controller. The main shaft (rotor) was also jammed. In this project work, the dc motor was tried to repair. But it could not be run because the specification of the motor and the operating manual was not available. To complete the project successfully, the dc motor was replaced by an ac induction motor. After replacing the motor, the speed of the new motor was controlled by a variable frequency drive (VFD). Using this device, the speed was controlled from 600 rpm to 3000 rpm smoothly. After the replacement, the testing of the centrifugal pump was successfully performed and the motor was controlled in various speeds. Experiment on the performance test of the centrifugal pump was carried out satisfactorily running the pump in various speeds operated by the VFD

    Direct torque control and dynamic performance of induction motor using fractional order fuzzy logic controller

    Get PDF
    Conventional direct torque control (DTC) is one of the best control systems for regulating the torque of an induction motor (IM). However, the DTC’s enormous waves in flux and torque cause acoustic noise that degrades control performance, especially at low speeds due to the DTC’s low switching frequency. Direct torque control systems, which focus just on torque and flux, have been proposed as a solution to these problems. In order to improve DTC control performance, this work introduces a fractional-order fuzzy logic controller method. The objective is to analyze this technique critically with regard to its efficacy in reducing ripple, its tracking speed, its switching loss, its algorithm complexity, and its sensitivity to its parameters. Simulation in MATLAB/Simulink verifies the anticipated control approach’s performance

    Design and Implementation of a Driving Strategy for Star-Connected Active Magnetic Bearings with Application to Sensorless Driving

    Get PDF
    For decades, sensorless position estimation methods gained lots of interest from the research community, especially in the field of electric drives and active magnetic bearings (AMBs). In particular, the direct flux control (DFC) technique promises unique advantages over other sensorless techniques, such as a higher bandwidth, but on the other hand, it requires the coils to be connected in a star topology. Until now, star-point connections are rarely found on active magnetic bearings. In consequence, there is no known publication about the application of the DFC to an AMB to this date. In order to apply the DFC to an AMB, a star-point driving approach for AMBs must be developed beforehand. A star-connected driving approach, capable of driving a four-phase AMB, is proposed and validated against traditional H-bridges in a simulation. Further, the strategy is tested in a physical application and generalised for 4∗n phases. In terms of current dynamics, the simulation results can be compared to the well-known full H-bridge driving. The experiments on the physical application show that the actual current in the coils follows a reference with satisfactory accuracy. Moreover, the inductance measurements of the coils show a strong dependency on the rotor’s position, which is crucial for sensorless operation. A star-point connection delivers a satisfying response behaviour in an AMB application, which makes sensorless techniques that require a star point, such as the DFC, applicable to active magnetic bearings

    RECENT TECHNIQUES ON OBSERVER DESIGN FOR DISTURBANCE ESTIMATION AND REJECTION IN PERMANENT MAGNET SYNCHRONOUS MOTORS

    Get PDF
    Permanent magnet synchronous machines (PMSMs) (either motor or generator) have attracted attention of research community comparing to other types of AC machines in the recent two decades. PMSMs are preferable than other AC machines in terms of large power-factor, broad speed of operation, compact proportions, and effective operation. Unfortunately, different sources of nonlinearities, model uncertainties, and external perturbations determine severity in a design of accurate speed control scheme for PMSMs. In the era of developing science and technologies, many advanced control solutions are proposed to control PMSMs. Although new solutions show their advantages comparing to traditional methods in terms of performance evaluation, practical realization of those algorithms could require expensive hardware with high computational capabilities. Furthermore, people in industry with less knowledge about the motor control may experience difficulties in using such advanced controllers on their own. Traditional PI/PID control schemes still work as a major control technique in modern industry, and in motor control as well. Numerous positive facts about the PI/PID schemes make such superiority of these control schemes. Firstly, the PI/PID can be implemented easily on most industrial software and hardware components. Secondly, while its scheme has clear mechanism of operation, most industrial processes could be controlled via the PI/PID scheme. These schemes are good in terms of small number of parameters to tune and tuning process itself could be very straightforward. Finally, implementation of the PI/PID controllers would require smaller time comparing to most proposed complex control solutions. It is studied that the traditional PI/PID controllers usually cannot deal with unpredictable disturbances, which in turn leads to degraded performance of an overall control system. Inspired by the advantages and widespread application of PI/PID control structure in industry, we propose a disturbance observer based composite control scheme which uses the PI-like controller for the feedback regulation and disturbance observer for estimation of lumped disturbances presented in a PMSM control system. Under this circumstance, this thesis work proposes three different control solutions for PMSM such as High-order disturbance observer-based composite control (HDOBCC), Disturbance rejection PI (DR-PI) control, and Hierarchical optimal disturbance observer-based control (HODOBC). Furthermore, to deeply understand the similarity and difference between the traditional disturbance observer-based control (DOBC) and active-disturbance rejection control (ADRC) schemes, this thesis also presents results of unification of these two control approaches in the speed control of a PMSM. The HDOBCC as the first method proposed in this thesis is designed to improve reference speed tracking performance of a PMSM under various operational conditions. A structure of the HDOBCC comprises a fuzzy-PI controller in a feedback stabilization part and novel high-order disturbance observer in a feedforward compensation part of the speed control system. The proposed controller is designed based on the research questions such as: firstly, although a fixed gain traditional PI controller is able to present satisfactory performance at some extent, still it does not guarantee such performance when sudden disturbances occur in a system; secondly, many disturbance observers designed for a PMSM in literature consider only a load torque as a disturbance, neglecting model uncertainties and parameter variations in design stage. Therefore, the HDOBCC is proposed such that it utilizes a fuzzy approach to determine parameters of the PI controller to overcome limitations of the fixed gain PI controller. Furthermore, the proposed scheme includes a high-order disturbance observer, which estimates not only the load torque, but also disturbances due to model uncertainties and parameter variations. Moreover, extended simulation and experimental studies are conducted to affirm performance of the HDOBCC under various form of the load torque. In addition to commonly tested step form of a load torque, severe forms of the load torque such as triangular form and sinusoidal form are tested with the proposed controller. Stability analysis of the closed-loop HDOBCC system is further provided. The next proposed method, DR-PI control, is designed by seeking answer for questions such as: firstly, although the traditional DOBC scheme applied for PMSM shows reasonable results in a PMSM control, its design can be limited to known actual parameters of the PMSM. In practice, actual parameters are usually not available, hence it could be hard to design the traditional DOBC in the absence of a plant information; secondly, for tuning a PI controller the traditional Ziegler-Nichols tuning approach still remains as one of the popular tuning approaches, however it does not give a rigorous explanation on selection of parameters during its design. Consequently, to answer these questions, the DR-PI control is designed for the PMSM speed control. The DR-PI control is designed such that it has a simple PI-like structure with intrinsic disturbance rejection mechanism determined by the parameters of a filtering element, desired plant model, and desired closed-loop system. Simulation and experimental validations are provided to validate the performance of the DR-PI. Furthermore, gain tuning mechanism and stability analysis of the closed-loop DR-PI-based speed control are also presented. The HODOBC scheme as a third proposed control scheme targets on the next research questions as: first, parameters of the traditional PI controller are mostly obtained by trial-and-error approach, which in turn may not guarantee satisfactory results; in a cascaded PMSM control, the outer speed loop performance highly depends on the performance of the inner current loop. The well-tuned speed control loop may degrade in performance, if the inner current loop is not tuned properly. To address these questions, we propose the HODOBC scheme, which consists of optimal PIlike controller in the feedback stabilization part and optimal extended-state observer (ESO) in the disturbance compensation part. The proposed HODOBC showed better performance when it is compared with other traditional controllers via experiments. Stability analysis is provided via the root locus approach. The study on unification of the DOBC and ADRC schemes has the following research question: the DOBC and ADRC are both used in estimation of total disturbance, but these two schemes are considered differently in literature. Hence, the study of both scheme is conducted to show the condition at which these two schemes show identical performance. The analysis of the traditional DOBC and ADRC schemes concludes that both scheme are equivalent in terms of performance characteristics if the dynamical delays of disturbance observers in each scheme are same. The results of analysis reveal that both scheme can be utilized to design a robust control system for PMSM, i.e. once the gains of disturbance observers can be calculated under the DOBC framework, further the disturbance rejection mechanism can be achieved via the ADRC framework. The results of PMSM control with the proposed control schemes have been tested on the Lucas-Nuelle DSP-based experimental setup

    ROBUST CONTROL OF A MICROGRID

    Get PDF

    Magnetorheological shock absorbers : modelling, design and control.

    Get PDF
    Magnetorheological (MR) fluids enable the rapid and continuous alteration of flow resistance via the application of a magnetic field. This unique characteristic can be utilised to build semi-active dampers for a wide variety of vibration control systems, including structural, automotive, and aeronautical applications. As an example, MR fluids could enhance the performance of aircraft landing gear, which are subject to widely varied and unpredictable impact conditions with conflicting damping requirements. In this thesis, a numerical sizing methodology is developed that enables the impact performance of MR landing gears to be optimised. Using real data provided by landing gear manufacturers, the sizing methodology is applied to both lightweight aircraft, and large-scale commercial jets in order to demonstrate scalability. For both aircraft types, results indicate that the peak force and the severity of fatigue loading can be enhanced over a wide range of impact conditions. However, it is shown that MR landing gears can be heavier than passive systems. To validate the numerical approach, a prototype MR landing gear shock strut is designed, fabricated, and tested. Good correlation between the model and experiment is demonstrated, particularly for low velocity excitations. MR dampers exhibit highly non-linear force-velocity behaviour. For landing gear impacts, it transpires that this behaviour can be used to an advantage, where it is shown that an acceptable performance can be obtained using open-loop control i.e. with a constant magnetic field. However, this non-linear behaviour is highly undesirable for other scenarios (e.g. an aircraft taxiing), and as a consequence, the choice of an effecti\'e control strategy remains an unresolved problem. A further aim of this thesis is therefore to develop effective control techniques for broadband excited MR vibration systems. Through an extensive series of numerical and experimental investigations, case studics representative of the general single-degree-of-freedom and two-degree-of-freedom vibration isolation problem are presented. In the experiments, the hardware-in-the-Ioopsimulation method is adopted, which provides an excellent means to bridge the gap between theory and practice when the behaviour of a specific component is complex. Here, the MR damper is physically tested, whilst the remainder of the structure is simulated in real-time. The results demonstrate that the chosen control strategy can provide significant performance benefits when compared to more commonly used strategies and equivalent passive systems. Furthermore, the control strategy is shown to be insensitive to factors such as the type of input excitation
    corecore