495 research outputs found

    Characterisation and modelling of graphene FET detectors for flexible terahertz electronics

    Get PDF
    Low-cost electronics for future high-speed wireless communication and non-invasive inspection at terahertz frequencies require new materials with advanced mechanical and electronic properties. Graphene, with its unique combination of flexibility and high carrier velocity, can provide new opportunities for terahertz electronics. In particular, several types of power sensors based on graphene have been demonstrated and found suitable as fast and sensitive detectors over a wide part of the electromagnetic spectrum. Nevertheless, the underlying physics for signal detection are not well understood due to the lack of accurate characterisation methods, which hampers further improvement and optimisation of graphene-based power sensors. In this thesis, progress on modelling, design, fabrication and characterisation of terahertz graphene field-effect transistor (GFET) detectors is presented. Amajor part is devoted to the first steps towards flexible terahertz electronics.The characterisation and modelling of terahertz GFET detectors from 1 GHz to 1.1 THz are presented. The bias dependence, the scattering parameters and the detector voltage response were simultaneously accessed. It is shown that the voltage responsivity can be accurately described using a combination of a quasi-static equivalent circuit model, and the second-order series expansion terms of the nonlinear dc I-V characteristic. The videobandwidth, or IF bandwidth, of GFET detectors is estimated from heterodyne measurements. Moreover, the low-frequency noise of GFET detectors between 1 Hz and 1 MHz is investigated. From this, the room-temperature Hooge parameter of fabricated GFETs is extracted to be around 2*10^{-3}. It is found that the thermal noise dominates above 100 Hz, which sets the necessary switching time to reduce the effect of 1/f noise.A state-of-the-art GFET detector at 400 GHz, with a maximum measured optical responsivity of 74 V/W, and a minimum noise-equivalent power of 130 pW/Hz^{0.5} is demonstrated. It is shown that the detector performance is affected by the quality of the graphene film and adjacent layers, hence indicating the need to improve the fabrication process of GFETs.As a proof of concept, a bendable GFET terahertz detector on a plastic substrate is demonstrated. The effects of bending strain on dc I-V characteristics, responsivity and sensitivity are investigated. The detector exhibits a robust performance for tensile strain of more than 1% corresponding to a bending radius of 7 mm. Finally, a linear array of terahertz GFET detectors on a flexible substrate for imaging applications is fabricated and tested. The results show the possibility of realising bendable and curved focal plane arrays.In summary, in this work, the combination of improved device models and more accurate characterisation techniques of terahertz GFET detectors will allow for further optimisation. It is shown that graphene can open up for flexible terahertz electronics for future niche applications, such as wearable smart electronics and curved focal plane imaging

    Terahertz Microstrip Elevated Stack Antenna Technology on GaN-on-Low Resistivity Silicon Substrates for TMIC

    Get PDF
    In this paper we demonstrate a THz microstrip stack antenna on GaN-on-low resistivity silicon substrates (ρ < 40 Ω.cm). To reduce losses caused by the substrate and to enhance performance of the integrated antenna at THz frequencies, the driven patch is shielded by silicon nitride and gold in addition to a layer of benzocyclobutene (BCB). A second circular patch is elevated in air using gold posts, making this design a stack configuration. The demonstrated antenna shows a measured resonance frequency in agreement with the modeling at 0.27 THz and a measured S11 as low as −18 dB was obtained. A directivity, gain and radiation efficiency of 8.3 dB, 3.4 dB, and 32% respectively was exhibited from the 3D EM model. To the authors' knowledge, this is the first demonstrated THz integrated microstrip stack antenna for TMIC (THz Monolithic Integrated Circuits) technology; the developed technology is suitable for high performance III-V material on low resistivity/high dielectric substrates

    AC-coupled substrate-integrated waveguide slot antenna in CMOS for terahertz applications

    Get PDF
    Substrate integrated waveguide (SIW) technology exhibits an emerging and very promising candidate for the development of circuits and components in the millimeter-wave region. As a part of the high-frequency wireless communication system, the on-chip antenna is playing an important role. However, designing an on-chip antenna presents significant challenges due to the design-rule restrictions posed by the foundries. Also, antenna performance degrades owing to the process limitation and the conventional structure. In this thesis, an on-chip SIW slot antenna has been designed in the TSMC 65-nm CMOS process to improve the radiation efficiency and to minimize the radiation leakage of the antenna. The antenna shows radiation efficiency of 35% and −10-dB bandwidth of 20 GHz at 410 GHz. However, characterizing on-chip antennas at this THz frequency range is difficult due to parasitic radiations from the measurement apparatus such as THz probes. One way to measure the antenna response is to integrate a detector circuit. Typically, a detector circuit needs RF and DC signal isolation. However, the SIW structure of the antenna is DC-shorted in the sidewall which poses a great challenge to building a detector circuit. Therefore, an AC-coupled SIW slot antenna has been presented by exploiting the antenna sidewall as a DC capacitor. Therefore, the SIW slot antenna including the DC capacitor can work well as expected. The designed AC-coupled SIW slot antenna integrated detector exhibits voltage responsivity of 316 V/W and 37 pW/Hz1/2 at 410 GHz

    Terahertz Technology and Its Applications

    Get PDF
    The Terahertz frequency range (0.1 – 10)THz has demonstrated to provide many opportunities in prominent research fields such as high-speed communications, biomedicine, sensing, and imaging. This spectral range, lying between electronics and photonics, has been historically known as “terahertz gap” because of the lack of experimental as well as fabrication technologies. However, many efforts are now being carried out worldwide in order improve technology working at this frequency range. This book represents a mechanism to highlight some of the work being done within this range of the electromagnetic spectrum. The topics covered include non-destructive testing, teraherz imaging and sensing, among others

    Comparison of microstrip w-band detectors based on zero bias schottky-diodes

    Get PDF
    This paper presents and discusses three different low-cost microstrip implementations of Schottky-diode detectors in W Band, based on the use of the Zero Bias Diode (ZBD) from VDI (Virginia Diodes, Charlottesville, VA, USA). Designs are based on a previous work of modeling of the ZBD diode. Designs also feature low-cost, easy-to-use tooling substrates (RT Duroid 5880, 5 mils thickness) and even low-cost discrete SMD components such as SOTA resistances (State Of The Art TM miniaturized surface mount resistors), which are modeled to be used well above commercial frequency margins. Intensive use of 3D EM simulation tools such as HFSS TM is done to support microstrip board modeling. Measurements of the three designs fabricated are compared to simulations and discussed.The authors would like to thank the funding of the University of Cantabria Industrial Doctorate programme 2014, project: “Estudio y Desarrollo de Tecnologías para Sistemas de Telecomunicación a Frecuencias Milimétricas y de Terahercios con Aplicación a Sistemas de Imaging en la Banda 90 GHz–100GHz” and the Spanish Ministry of Economy, Science and Innovation for the financial support provided through projects CONSOLIDER-INGENIO CSD2008-00068 (TERASENSE), the continuing excellence network SPATEK and the projects TEC2014-58341-C4-1-R, TEC2017-83343-C4-1-R. and AYA2017-92153-EXP

    Miniaturized Silicon Photodetectors

    Get PDF
    Silicon (Si) technologies provide an excellent platform for the design of microsystems where photonic and microelectronic functionalities are monolithically integrated on the same substrate. In recent years, a variety of passive and active Si photonic devices have been developed, and among them, photodetectors have attracted particular interest from the scientific community. Si photodiodes are typically designed to operate at visible wavelengths, but, unfortunately, their employment in the infrared (IR) range is limited due to the neglectable Si absorption over 1100 nm, even though the use of germanium (Ge) grown on Si has historically allowed operations to be extended up to 1550 nm. In recent years, significant progress has been achieved both by improving the performance of Si-based photodetectors in the visible range and by extending their operation to infrared wavelengths. Near-infrared (NIR) SiGe photodetectors have been demonstrated to have a “zero change” CMOS process flow, while the investigation of new effects and structures has shown that an all-Si approach could be a viable option to construct devices comparable with Ge technology. In addition, the capability to integrate new emerging 2D and 3D materials with Si, together with the capability of manufacturing devices at the nanometric scale, has led to the development of new device families with unexpected performance. Accordingly, this Special Issue of Micromachines seeks to showcase research papers, short communications, and review articles that show the most recent advances in the field of silicon photodetectors and their respective applications

    Describing broadband terahertz response of graphene FET detectors by a classical model

    Get PDF
    Direct power detectors based on field-effect transistors are becoming widely used for terahertz applications. However, accurate characterization at terahertz frequencies of such detectors is a challenging task. The high-frequency response is dominated by parasitic coupling and loss associated with contacts and overall layout of the component. Moreover, the performance of such detectors is complicated to predict since many different physical models are used to explain the high sensitivity at terahertz frequencies. This makes it hard to draw important conclusions about the underlying device physics for these detectors. For the first time, we demonstrate accurate and comprehensive characterization of graphene field-effect transistors from 1 GHz to 1.1 THz, simultaneously accessing the bias dependence, the scattering parameters, and the detector voltage responsivity. Within a frequency range of more than 1 THz, and over a wide bias range, we have shown that the voltage responsivity can be accurately described using a combination of a small-signal equivalent circuit model, and the second-order series expansion terms of the nonlinear dc IVI-V characteristic. Without bias, the measured low-frequency responsivity was 0.3 kV/W with the input signal applied to the gate, and 2 kV/W with the input signal applied to the drain. The corresponding cut-off frequencies for the two cases were 140 GHz and 50 GHz, respectively. With a 300-GHz signal applied to the gate, a voltage responsivity of 1.8 kV/W was achieved at a drain-source current of 0.2 mA. The minimum noise equivalent power was below 30 pW/Hz\sqrt\mathrm{Hz} in cold mode. Our results show that detection of terahertz signals in graphene field-effect transistors can be described over a wide frequency range by the nonlinear carrier transport characteristic obtained at static electrical fields. This finding is important for explaining the mechanism of detection and for further development of terahertz detectors

    Photodetectors

    Get PDF
    In this book some recent advances in development of photodetectors and photodetection systems for specific applications are included. In the first section of the book nine different types of photodetectors and their characteristics are presented. Next, some theoretical aspects and simulations are discussed. The last eight chapters are devoted to the development of photodetection systems for imaging, particle size analysis, transfers of time, measurement of vibrations, magnetic field, polarization of light, and particle energy. The book is addressed to students, engineers, and researchers working in the field of photonics and advanced technologies
    corecore