21 research outputs found

    Research and design of high-speed advanced analogue front-ends for fibre-optic transmission systems

    Get PDF
    In the last decade, we have witnessed the emergence of large, warehouse-scale data centres which have enabled new internet-based software applications such as cloud computing, search engines, social media, e-government etc. Such data centres consist of large collections of servers interconnected using short-reach (reach up to a few hundred meters) optical interconnect. Today, transceivers for these applications achieve up to 100Gb/s by multiplexing 10x 10Gb/s or 4x 25Gb/s channels. In the near future however, data centre operators have expressed a need for optical links which can support 400Gb/s up to 1Tb/s. The crucial challenge is to achieve this in the same footprint (same transceiver module) and with similar power consumption as today’s technology. Straightforward scaling of the currently used space or wavelength division multiplexing may be difficult to achieve: indeed a 1Tb/s transceiver would require integration of 40 VCSELs (vertical cavity surface emitting laser diode, widely used for short‐reach optical interconnect), 40 photodiodes and the electronics operating at 25Gb/s in the same module as today’s 100Gb/s transceiver. Pushing the bit rate on such links beyond today’s commercially available 100Gb/s/fibre will require new generations of VCSELs and their driver and receiver electronics. This work looks into a number of state‐of-the-art technologies and investigates their performance restraints and recommends different set of designs, specifically targeting multilevel modulation formats. Several methods to extend the bandwidth using deep submicron (65nm and 28nm) CMOS technology are explored in this work, while also maintaining a focus upon reducing power consumption and chip area. The techniques used were pre-emphasis in rising and falling edges of the signal and bandwidth extensions by inductive peaking and different local feedback techniques. These techniques have been applied to a transmitter and receiver developed for advanced modulation formats such as PAM-4 (4 level pulse amplitude modulation). Such modulation format can increase the throughput per individual channel, which helps to overcome the challenges mentioned above to realize 400Gb/s to 1Tb/s transceivers

    State of the art in chip-to-chip interconnects

    Get PDF
    This thesis presents a study of short-range links for chips mounted in the same package, on printed circuit boards or interposers. Implemented in CMOS technology between 7 and 250 nm, with links that operate at a data rate between 0,4 and 112 Gb/s/pin and with energy efficiencies from 0,3 to 67,7 pJ/bit. The links operate on channels with an attenuation lower than 50 dB. A comparison is made with graphical representations between the different articles that shows the correlation between the different essential metrics of chip-to-chip interconnects, as well as its evolution over the last 20 years.Esta tesis presenta un estudio de enlaces de corto alcance para chips montados en un mismo paquete, en placas de circuito impreso o intercaladores. Implementado en tecnología CMOS entre 7 y 250 nm, con enlaces que operan a una velocidad de datos entre 0,4 y 112 Gb/s/pin y con eficiencias energéticas de 0,3 a 67,7 pJ/bit. Los enlaces operan en canales con una atenuación inferior a 50 dB. Se realiza una comparación con representaciones gráficas entre los diferentes artículos que muestra la correlación entre las distintas métricas esenciales de las interconexiones chip a chip, así como su evolución en los últimos 20 años.Aquesta tesi presenta un estudi d'enllaços de curt abast per a xips muntats en el mateix paquet, en plaques de circuits impresos o interposers. Implementat en tecnologia CMOS entre 7 i 250 nm, amb enllaços que funcionen a una velocitat de dades entre 0,4 i 112 Gb/s/pin i amb eficiències energètiques de 0,3 a 67,7 pJ/bit. Els enllaços funcionen en canals amb una atenuació inferior a 50 dB. Es fa una comparació amb representacions gràfiques entre els diferents articles que mostra la correlació entre les diferents mètriques essencials d'interconnexions xip a xip, així com la seva evolució en els darrers 20 anys

    Modeling and Design of High-Speed CMOS Receivers for Short-Reach Photonic Links

    Get PDF
    This dissertation presents several research outcomes towards designing high-speed CMOS optical receivers for energy-efficient short-reach optical links. First, it provides a wide survey of recently published equalizer-based receivers and presents a novel methodology to accurately calculate their noise. The proposed methodology is then used to find the receiver that achieves the best sensitivity. Second, the trade-off between sensitivity and power dissipation of the receiver is optimized to reduce the energy consumption per bit of the overall link. Design trade-offs for the receiver, transmitter, and the overall link are presented, and comparisons are made to study how much receiver sensitivity can be sacrificed to save its power dissipation before this power reduction is outpaced by the transmitter’s increase in power. Unlike conventional wisdom, our results show that energy-efficient links require low-power receivers with input capacitance much smaller than that required for noise-optimum performance. Third, the thesis presents a novel equalization technique for optical receivers. A linear equalizer (LE) is realized by adding a pole in the feedback paths of an active feedback-based wideband amplifier. By embedding the peaking in the main amplifier (MA), the front-end meets the sensitivity and gain of conventional LE-based receivers with better energy efficiency by eliminating the standalone equalizer stage(s). Electrical measurements are presented to demonstrate the capability of the proposed technique in restoring the bandwidth and improving the performance over the conventional design

    Power-Proportional Optical Links

    Get PDF
    The continuous increase in data transfer rate in short-reach links, such as chip-to-chip and between servers within a data-center, demands high-speed links. As power efficiency becomes ever more important in these links, power-efficient optical links need to be designed. Power efficiency in a link can be achieved by enabling power-proportional communication over the serial link. In power-proportional links, the power dissipated by a link is proportional to the amount of data communicated. Normally, data-rate demand is not constant, and the peak data-rate is not required all the time. If a link is not adapted according to the data-rate demand, there will be a fixed power dissipation, and the power efficiency of the link will degrade during the sub-maximal link utilization. Adapting links to real-time data-rate requirements reduces power dissipation. Power proportionality is achieved by scaling the power of the serial link linearly with the link utilization, and techniques such as variable data-rate and burst-mode can be adopted for this purpose. Links whose data rate (and hence power dissipation) can be varied in response to system demands are proposed in this work. Past works have presented rapidly reconfigurable bandwidth in variable data-rate receivers, allowing lower power dissipation for lower data-rate operation. However, maintaining synchronization during reconfiguration was not possible since previous approaches have introduced changes in front-end delay when they are reconfigured. This work presents a technique that allows rapid bandwidth adjustment while maintaining a near-constant delay through the receiver suitable for a power-scalable variable data-rate optical link. Measurements of a fabricated integrated circuit (IC) show nearly constant energy per bit across a 2× variation in data rate while introducing less than 10 % of a unit interval (UI) of delay variation. With continuously increasing data communication in data-centers, parallel optical links with ever-increasing per-lane data rates are being used to meet overall throughput demands. Simultaneously, power efficiency is becoming increasingly important for these links since they do not transmit useful data all the time. The burst-mode solution for vertical-cavity surface-emitting laser (VCSEL)-based point-to-point communication can be used to improve links’ energy efficiency during low link activity. The burst-mode technique for VCSEL-based links has not yet been deployed commercially. Past works have presented burst-mode solutions for single-channel receivers, allowing lower power dissipation during low link activity and solutions for fast activation of the receivers. However, this work presents a novel technique that allows rapid activation of a front-end and fast locking of a clock-and-data-recovery (CDR) for a multi-channel parallel link, utilizing opportunities arising from the parallel nature of many VCSEL-based links. The idea has been demonstrated through electrical and optical measurements of a fabricated IC at 10 Gbps, which show fast data detection and activation of the circuitry within 49 UIs while allowing the front-end to achieve better energy efficiency during low link activity. Simulation results are also presented in support of the proposed technique which allows the CDR to lock within 26 UIs from when it is powered on

    Towards the Design of Robust High-Speed and Power Efficient Short Reach Photonic Links

    Get PDF
    In 2014, approximately eight trillion transistors were fabricated every second thanks to improvements in integration density and fabrication processes. This increase in integration and functionality has also brought about the possibility of system on chip (SoC) and high-performance computing (HPC). Electrical interconnects presently dominate the very-short reach interconnect landscape (< 5 cm) in these applications. This, however, is expected to change. These interconnects' downfall will be caused by their need for impedance matching, limited pin-density and frequency dependent loss leading to intersymbol interference. In an attempt to solve this, researchers have increasingly explored integrated silicon photonics as it is compatible with current CMOS processes and creates many possibilities for short-reach applications. Many see optical interconnects as the high-speed link solution for applications ranging from intra-data center (~200 m) down to module or even chip scales (< 2 cm). The attractive properties of optical interconnects, such as low loss and multiplexing abilities, will enable such things as Exascale high-performance computers of the future (equal to 10^18 calculations per second). In fact, forecasts predict that by 2025 photonics at the smallest levels of the interconnect hierarchy will be a reality. This thesis presents three novel research projects, which all work towards increasing robustness and cost-efficiency in short-reach optical links. It discusses three parts of the optical link: the interconnect, the receiver and the photodiode. The first topic of this thesis is exploratory work on the use of an optical multiplexing technique, mode-division multiplexing (MDM), to carry multiple data lanes along with a forwarded clock for very short-reach applications. The second topic discussed is a novel reconfigurable CMOS receiver proposed as a method to map a clock signal to an interconnect lane in an MDM source-synchronous link with the lowest optical crosstalk. The receiver is designed as a method to make electronic chips that suit the needs of optical ones. By leveraging the more robust electronic integrated circuit, link solutions can be tuned to meet the needs of photonic chips on a die by die basis. The third topic of this thesis proposes a novel photodetector which uses photonic grating couplers to redirect vertical incident light to the horizontal direction. With this technique, the light is applied along the entire length of a p-n junction to improve the responsivity and speed of the device. Experimental results for this photodetector at 35 Gb/s are published, showing it to be the fastest all-silicon based photodetector reported in the literature at the time of publication

    Bandwidth Enhancement Techniques For Cmos Transimpedance Amplifier

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2016CMOS Transferempedans Kuvvetlendiricinin bandgenis¸lig˘ i bas¸arımını gelis¸tirmeye yönelik teknikler haberles¸me teknolojisinde ve uygulamalarında ortaya çıkan hızlı gelis¸meler ve uygulamalar verilere hızlı eris¸im avantajı yanında hızlı hesaplama ve haberles¸me tekniklerine imkan veren bir bilgi çag˘ ını ortaya çıkarmıs¸tır. Sürekli artan hızlı bilgi transferi ihtiyacı, hızlı elemanların ve tümdevrelerin tasarımına yönelik aras¸tırmalara liderlik eden optik haberles¸me teknig˘ ini dog˘ urmus¸tur. Veri iletimi için mevcut ortamlar arasında optik fiber yapıları en iyi bas¸arımı sunmaktadır. Günümüzde optik fiberler çok yog˘ un sayısal veri transferinde genis¸ kullanım alanı bulmaktadır. Yog˘ un veri aktarımı kilometrelerce uzunlukta optik fiberler üzerinde önemli bir kayıp olmaksızın yapılabilmektedir. Normal s¸artlarda, is¸aret aktarımının ıs¸ık ile yapılması durumunda ortaya çıkan kayıp elektriksel yolla yapılan aktarıma gore daha düs¸üktür. Optik fiberler genel bas¸arımı iyiles¸tirmenin yanında düs¸ük maliyet avantajını da sunmaktadır. En yüksek teknolojilerde, optik fiber elemanları ve sistemleri çok yog˘ un veri aktarımı amacıyla kullanılmaktadır. Sonuç olarak optik fiber teknolojisi düs¸ük kayıpla çok yog˘ un veri aktarımını az maliyetle sunabilen bir teknoloji olarak günümüzde çok önemli bir konuma sahiptir. Genel olarak, optik haberles¸me sistemlerinde kullanılan analog devreler Galyum Arsenik (GaAs) veya Indiyum Fosfid (InP) teknolojileri ile üretilmektedir. Bu prosesler yüksek hızlı devreler için olus¸turulmakta olup optik haberles¸me sistemlerinin ihtiyaç duydug˘ u yüksek band genis¸lig˘ ine sahip devreleri üretmek için genellikle tek alternatif olarak kars¸ımıza çıkmaktadırlar. Bununla birlikte, CMOS proseslerinde ortaya çıkan hızlı gelis¸meler sayesinde daha yüksek bas¸arımlara sahip analog devreleri CMOS proses kullanarak tasarlama ve gerçekles¸tirme imkanları gittikçe artmaktadır. CMOS prosesin tercih edilmesine sebep olan en önemli avantaj maliyetlerde ortaya çıkan büyük düs¸üs¸tür. CMOS proseslerin maliyetinin düs¸ük olmasının sebebi, büyük alan kullanımı gerektiren sayısal devre gerçekles¸tirmelerinde çok genis¸ bir kullanıma sahip olmasıdır. CMOS prosesin dig˘ er bir avantajı sayısal ve analog devrelerin aynı taban üzerinde gerçekles¸tirilmesine imkan vermesidir. Transferempedans kuvvetlendirici (TIA) optik haberles¸me alıcılarındaki ilk blok olup giris¸indeki akımı çıkıs¸ında gerilime dönüs¸türmektedir. Tipik bir TIA’nın önemli bas¸arım ihtiyaçları genis¸ bandgenis¸lig˘ i, yüksek transferempedans kazancı, düs¸ük gürültü, düs¸ük güç tüketimi ve küçük grup geçikme deg˘ is¸im aralıg˘ ıdır. Nano teknolojilerdeki güncel gelis¸meler, optik alıcıların giris¸ katı uygulamalarında gerekli kolay bir s¸ekilde elde edilemeyen bas¸arımları sag˘ layabilen CMOS Transfer- empedans Kuvvetlendiricinin (TIA) tasarımını ekonomik hale getirmis¸tir. TIA tasarımında dikkat edilmesi gereken iki önemli mesele bandgenis¸lig˘ i ve giris¸ hassasiyetidir. TIA’nın bandgenis¸lig˘ i genellikle giris¸teki parasitic kapasite tarafından sınırlanmaktadır. TIA’nın bandgenis¸lig˘ i fotodiyot kapasitesi, transistor giris¸ kapasitesi ve transistor giris¸ direncinin belirledig˘ i RC zaman sabiti ile bulunabilir. Giris¸ hassasiyeti ise TIA’nın giris¸ gürültü akımından etkilenmektedir. Bundan dolayı TIA’nın bandgenis¸lig˘ i ve giris¸ is¸areti hassasiyeti bas¸arımlarını optimum bir s¸ekilde temin eden uygun devre topolojisinin belirlenmesi önemli bir meseledir. Bu tez, CMOS teknolojisi kullanan Transferempedans Kuvvetlendiricinin band- genis¸lig˘ i bas¸arımını gelis¸tirmeye yönelik yeni teknikler sunan bir çalıs¸madır. CMOS TIA’nın bandgenis¸lig˘ i bas¸arımını iyiles¸tirmeye yönelik farklı yaklas¸ımlar tez içerisinde gösterilmektedir. Bundan bas¸ka, bu çalıs¸ma transferempedansı kuvvetlendiricinin analizini ve tasarımını tam olarak anlamak için gerekli altyapı bilgisini de sunmaktadır. Bu tezde, sistemle devre tasarımı arasındaki bos¸lug˘ u doldurmak için s¸unlar yapılmıs¸tır: - Band genis¸lig˘ i bas¸arımının arttırılmasının matematiksel analizlerle anlas¸ılması. - Gerçekles¸tirilebilir yeni devre yapılarının tanıtılması. - Teklif edilen tasarımların CMOS teknolojisiyle gerçekles¸tirilebilirlig˘ inin kapsamlı ve detaylı simülasyonlar kullanılarak gösterilmesi. Sunulan yeni devre yapılarının ilki olarak, negatif empedans devresinin bandgenis¸lig˘ i artıs¸ı için kullanılabileceg˘ i bu tezde gösterilmis¸ olup bu teknik bu tezde TIA’nın çıkıs¸ kutpu için uygulanmaktadır. Bandgenis¸lig˘ i, kazancı (gmRout) arttırarak ve çıkıs¸ta aynı zaman sabiti korunarak arttırılabilir. Çıkıs¸ direnci arttırılarak kazanç (A) yükseltilebilir. Çıkıs¸ direnci çıkıs¸a uygulanacak bir negative direnç devresi ile arttırılabilir. Çıkıs¸ta aynı zaman sabitini korumak için ise negatif kapasite devresi kullanılabilir. Daha yüksek kazanç deg˘ eri (A) rezistif geribesleme sayesinde giris¸ direncini azaltarak giris¸ kutbunun yükselmesini sag˘ lamaktadır. Sonuç olarak, bandgenis¸lig˘ i bas¸arımında bir iyiles¸tirme elde edilebilmektedir. Teklif edilen topoloji ile 7GHz bandgenis¸lig˘ ine ve 54.3dB’lik kazanca sahip bir TIA tasarlanmıs¸tır. Teklif edilen TIA’nın 1.8V’luk besleme kaynag˘ ından çektig˘ i toplam güç 29mW’tır. Teklif edilen TIA’nın 0.18um CMOS proses ile post-serimi yapılmıs¸tır. Benzetimle elde edilmis¸ giris¸ gürültü akım yog˘ unlug˘ u 5.9pA/ Hz olup kapladıg˘ ı alan 230umX45um olmus¸tur. Tezde bir sonraki çalıs¸mada es¸les¸tirme teknig˘ i kullanılarak genis¸ bantlı bs¸r TIA tasarlanmıs¸tır. Giris¸te seri empedans es¸les¸tirme teknig˘ i ve çıkıs¸ta T tipi es¸les¸tirme yapısı birlikte kullanılarak TIA’nın bandgenis¸lig˘ i bas¸arımının iyi bir düzeyde iyiles¸tirilebileceg˘ i gösterilmis¸tir. Bu yaklas¸ım 0.18um CMOS teknolojisi ile yapılmıs¸ bir tasarım örneg˘ i ile desteklenmis¸tir. Post serim sonuçları 50fF’lık bir fotodiyot kapasitesi için 20GHz’lik bandgenis¸lig˘ i, 52.6dB’lik transferdirenci kazancı, 8.7pA/ Hz ‘lik giris¸ gürültü akımı ve 3pS’den daha az grup geçikmesi bas¸arımılarını vermis¸tir. Bu TIA uygulaması 1.8V’luk besleme kaynag˘ ından 1.3mW güç çekmis¸tir. Tezin üçüncü as¸amasında TIA band genis¸lig˘ i bas¸arımını arttırmaya yönelik bas¸ka bir yapı sunulmaktadır. Bu yapı, literatürde bilinen regule edilmis¸ ortak geçitli mimari ile birlikte farklı rezonans frekanslarına sahip iki rezonans devresinin paralel kullanımını içermektedir. Teklif edilen TIA devresinde, kapasite dejenarasyon ve seri endüktif tepe teknikleri kutup-sıfır kompanzasyonu için kullanılmıs¸tır. 100fF’lık fotodiyot kapasitesine sahip bir TIA 0.18um CMOS prosesi ili tasarlanmıs¸tır. Post-serim sonuçları 13GHz’lik bandgenis¸lig˘ i, 53dB’lik transferdirenci kazancı, 24pA/ Hz ‘lik xxvi giris¸ gürültü akımı ve 5pS’den daha az grup geçikmesi bas¸arımılarını vermis¸tir. Bu TIA uygulaması 1.8V’luk besleme kaynag˘ ından 11mW güç çekmis¸tir. Tezin dördüncü as¸amasında, regule edilmis¸ ortak geçitli mimari kullanan TIA’nın bandgenis¸lig˘ i bas¸arımını arttırmaya yönelik bir teknik tanıtılmıs¸tır. Bu teknik, resistif kompanzasyon teknig˘ ini ve merdiven es¸les¸tirme yapısını bir kaskod akım kaynag˘ ı ile birlikte kullanmaya dayanmaktadır. Bu yapının bas¸arımını göstermek amacıyla, 0.18um CMOS prosesi ile bir tasarım yapılmıs¸tır. Post-serim sonuçları 8.4GHz’lik bandgenis¸lig˘ i, 51.3dB’lik transferdirenci kazancı, 20pA/ Hz ‘lik giris¸ gürültü akımı ve 4pS’den daha az grup geçikmesi bas¸arımılarını vermis¸tir. Bu TIA uygulaması 1.8V’luk besleme kaynag˘ ından 17.8mW güç çekmis¸tir. Tezin son as¸amasında, tezde sunulan teknikler ve yapıların kendi aralarında kars¸ılas¸tırılması verilmektedir. Kars¸ılas¸tırma öncelikli olarak band genis¸lig˘ i, transferempedansı kazancı, gürültü, güç tüketimi, grup geçikme deg˘ is¸im aralıg˘ ı ve kapladıg˘ ı alan için yapılmaktadır. Bunlara ek olarak, sunulan yapıların kullandıg˘ ı tekniklerin avantajlı yanları ile birlikte (kararlılık üzerinde olus¸abilecek negatif etkiler gibi) dezavantajlı tarafları da tezin son as¸amasında verilmektedir. Tezin son as¸amasında yapılan kars¸ılas¸tırmalar, en iyi bant genis¸lig˘ i bas¸arımının es¸les¸tirme teknig˘ ini kullanan yapıdan elde edildig˘ ini göstermektedir. Bununla birlikte dig˘ er yapıların da band genis¸lig˘ i bas¸arımı üzerinde önemli iyiles¸tirmeler yaptıg˘ ı ortaya konulmaktadır. Gürültü açısından ise en yüksek bas¸arımın negatif empedans teknig˘ ini kullanan yapıda elde edildig˘ i görülmektedir. Bu yapı aynı zamanda düs¸ük alan kullanımı imkanı da sunmaktadır. Tezde sunulan dig˘ er iki yapı ise özellikle yüksek deg˘ erli fotodiyot kapasiteleri için incelenmis¸ olup band genis¸lig˘ i bas¸arımı üzerinde önemli iyiles¸tirmeler yaptıkları gösterilmektedir. Sonuç olarak, bu tezde transferempedans kuvvetlendiricinin bandgenis¸lig˘ i bas¸arımını iyiles¸tiren farklı teknikler sunulmakta olup bu teknikler ayrıntılı ve kars¸ılas¸tırmalı olarak incelenmektedir. Tezde verilen sonuçlar sunulan yeni tekniklerin bas¸arımlarının yüksek oldug˘ unu ve literature yeni ve güçlü alternatfiler sunuldug˘ unu göstermektedir. Tezde sunulan yaklas¸ımların ve tekniklerin gelecekte yapılacak benzer aras¸tırmalara hem yardımcı olacak hem de referans olacak nitelikte oldug˘ u düs¸ünülmektedir.The accelerated development of integrated systems in the communication technology and their application are among the significant technologies that have developed the information era by empowering high-speed computation and communication technique besides high-speed access to stored data. The continuous growth demand for high-speed transport of information has rekindled optical communications, leading to derived research on high-speed device and integrated circuit design. Among the available medium to transfer the data, optical fibers have the best performance. Optical fibers are very common these days to transport very high rate digital data. Such high speed data rates can be transported over kilometers of optical fiber and without significant loss. Normally loss is very low when the signal is transmitted using light rather than electrical signal. These fibers also have the advantage of being low cost in addition to improvement of performance. In state-of-the-art technology, fiber optic devices and systems are evidently employed to realize very high data rates. Fiber optic communication is a solution because high data rates can be transmitted through this high capacity cable with high performance. Traditionally, analog circuits used in optical communication systems are implemented using Gallium Arsenide (GaAs) or Indium Phosphide (InP) technologies. These processes are designed for high speed circuits, and have been traditionally the only technologies able to produce the high bandwidth circuits required in optical communication systems. However, due to the aggressive scaling of the CMOS process, it is now becoming possible to design high performance analog circuits in CMOS. The primary advantage of moving to a CMOS process is a dramatic reduction in cost due to its widespread use in high volume digital circuits. Another advantage of using CMOS is its ability to integrate digital and analog circuits onto the same substrate. Transimpedance amplifier (TIAs) is the first building block in the optical communication receiver that converts the small signal current to a corresponding output voltage signal. The important requirements of a typical TIA are large bandwidth, high transimpedance gain, low noise, low power consumption, and small group delay variation. Current developments in nanoscale technologies made it economically feasible to design CMOS transimpedance amplifier (TIA) that satisfies the stringent performances necessary for the front-end optical transceivers applications such as low power, low cost and high integration which offers the most economical solution in the consumer application market. In designing of TIA, the two major factors that must be considered are the bandwidth and the input sensitivity. The bandwidth of TIA is usually limited by the parasitic capacitance at the input stage, and it can be calculated by its RC time constant contributed by photodiode capacitance, parasitic capacitance and input resistance of the amplifier. The sensitivity is affected by the input current noise of the TIA. Therefore it is challenge to choose the suitable circuit topology that provides an optimal trade-off between bandwidth and input signal sensitivity for TIA. This thesis is an attempt toward providing novel techniques to extend the bandwidth of the transimpedance amplifier using CMOS technology. Different approaches used to improve the bandwidth of CMOS TIAs are covered. Moreover, this research provides the necessary background knowledge to fully understand the analysis and design of the transimpedance amplifier (TIA). Bridging the gap between system and circuit design is done by: Understanding the bandwidth expansion by mathematical analysis. Introducing new circuit architectures that can be realized. Demonstrating implementation of the proposed designs using extensive simulations in CMOS technology. It is shown in this thesis that, using a negative impedance NI circuit can be used for bandwidth extension. In our application, the negative impedance is incorporated into the output pole of TIA. The bandwidth can be improved by increasing the gain (A = gmRout ) and by maintaining the same time constant at the output pole. A better gain A can be obtained if the output resistance Rout is increased. Increasing Rout can be done by placing a negative resistance RIN in parallel with the output resistance Rout . In order to maintain the same time constant at the output node, a negative capacitance can be used. It have been reported that, the shunt feedback architecture is used to improve the bandwidth of TIA. Increasing the gain A effectively decreases the input resistance and hence increase the frequency of the input pole due to feedback. As a result, an improvement of the bandwidth can be obtained. Using the proposed topology, a wide band transimpedance amplifier with a bandwidth of 7 GH z and transimpedance gain of 54.3 dBΩ is achieved. The total power consumption of the proposed TIA from the 1.8 V power supply is 29 mW . The TIA is designed in 0.18 µ m CMOS technology. The simulated input referred noise current spectral density is 5.9 pA/√H z and the TIA occupies 230µ m × 45µ m of area. Furthermore, a wide band TIA is designed using the matching technique. It is shown that by simultaneously using of series input matching topology and T-output matching network, the bandwidth of the TIA can be obviously improved. This methodology is supported by a design example in a 0.18 µ m CMOS technology. The post layout simulation results show a bandwidth of 20 GH z with 50 f F photodiode capacitance, a transimpedance gain of 52.6 dBΩ, 11 pA/√H z input referred noise and group delay less than 8.3 ps. The TIA dissipates 1.3 mW from a 1.8 V supply voltage. In addition, a new design possessing to extend the bandwidth of the TIA is presented. This TIA employs a parallel combination of two series resonate circuits with different resonate frequencies on the conventional regulated common gate (RGC) architecture. In the proposed TIA, a capacitance degeneration and series inductive peaking technique are used for pole-zero elimination. The TIA is implemented in a 0.18 µ m CMOS process, where a 100 f F photodiode is considered. The post layout simulation results show a transimpedance gain of 53 dBΩ transimpedance gain along with a 13 GH z bandwidth. The designed TIA consumes 11 mW from a 1.8 V supply, and its group-delay variation is 5 ps with 24 pA/√H z input referred noise. xxii In the last phase of the work, a technique to enhance the bandwidth of the regulated common gate (RCG) transimpedance amplifier is described. The technique is based on using a cascode current mirror with resistive compensation technique and a ladder matching network. In order to verify the operation and the performance of the proposed technique, a CMOS design example is designed using the 0.18µ m CMOS process technology. The post layout simulation results show that, the proposed TIA achieved a bandwidth of 8.4 GH z, a transimpedance gain of 51.3 dBΩ and input referred noise current spectral density of 20 pA/√H z. The average group-delay variation is 4 ps over the bandwidth and the TIA consumes 17.8 mW from a 1.8 V supply. To sum up, this thesis focuses on various design techniques of transimpedance amplifier (TIA) that improves the bandwidth performance. We believe that, our approaches and techniques exhibit a path which other future researchers can follow and as well refer to as their researching domain and also could be used in their research applications.DoktoraPh

    Design of High-Speed SerDes Transceiver for Chip-to-Chip Communications in CMOS Process

    Get PDF
    With the continuous increase of on-chip computation capacities and exponential growth of data-intensive applications, the high-speed data transmission through serial links has become the backbone for modern communication systems. To satisfy the massive data-exchanging requirement, the data rate of such serial links has been updated from several Gb/s to tens of Gb/s. Currently, the commercial standards such as Ethernet 400GbE, InfiniBand high data rate (HDR), and common electrical interface (CEI)-56G has been developing towards 40+ Gb/s. As the core component within these links, the transceiver chipset plays a fundamental role in balancing the operation speed, power consumption, area occupation, and operation range. Meanwhile, the CMOS process has become the dominant technology in modern transceiver chip fabrications due to its large-scale digital integration capability and aggressive pricing advantage. This research aims to explore advanced techniques that are capable of exploiting the maximum operation speed of the CMOS process, and hence provides potential solutions for 40+ Gb/s CMOS transceiver designs. The major contributions are summarized as follows. A low jitter ring-oscillator-based injection-locked clock multiplier (RILCM) with a hybrid frequency tracking loop that consists of a traditional phase-locked loop (PLL), a timing-adjusted loop, and a loop selection state-machine is implemented in 65-nm C-MOS process. In the ring voltage-controlled oscillator, a full-swing pseudo-differential delay cell is proposed to lower the device noise to phase noise conversion. To obtain high operation speed and high detection accuracy, a compact timing-adjusted phase detector tightly combined with a well-matched charge pump is designed. Meanwhile, a lock-loss detection and lock recovery is devised to endow the RILCM with a similar lock-acquisition ability as conventional PLL, thus excluding the initial frequency set- I up aid and preventing the potential lock-loss risk. The experimental results show that the figure-of-merit of the designed RILCM reaches -247.3 dB, which is better than previous RILCMs and even comparable to the large-area LC-ILCMs. The transmitter (TX) and receiver (RX) chips are separately designed and fab- ricated in 65-nm CMOS process. The transmitter chip employs a quarter-rate multi-multiplexer (MUX)-based 4-tap feed-forward equalizer (FFE) to pre-distort the output. To increase the maximum operating speed, a bandwidth-enhanced 4:1 MUX with the capability of eliminating charge-sharing effect is proposed. To produce the quarter-rate parallel data streams with appropriate delays, a compact latch array associated with an interleaved-retiming technique is designed. The receiver chip employs a two-stage continuous-time linear equalizer (CTLE) as the analog front-end and integrates an improved clock data recovery to extract the sampling clocks and retime the incoming data. To automatically balance the jitter tracking and jitter suppression, passive low-pass filters with adaptively-adjusted bandwidth are introduced into the data-sampling path. To optimize the linearity of the phase interpolation, a time-averaging-based compensating phase interpolator is proposed. For equalization, a combined TX-FFE and RX-CTLE is applied to compensate for the channel loss, where a low-cost edge-data correlation-based sign zero-forcing adaptation algorithm is proposed to automatically adjust the TX-FFE’s tap weights. Measurement results show that the fabricated transmitter/receiver chipset can deliver 40 Gb/s random data at a bit error rate of 16 dB loss at the half-baud frequency, while consuming a total power of 370 mW

    Architectures and Integrated Circuits for Efficient, High-power "Digital'' Transmitters for Millimeter-wave Applications

    Get PDF
    This thesis presents architectures and integrated circuits for the implementation of energy-efficient, high-power "digital'' transmitters to realize high-speed long-haul links at millimeter-wave frequencies in nano-scale silicon-based processes

    High-Speed Link Modeling: Analog/Digital Equalization and Modulation Techniques

    Get PDF
    High-speed serial input-output (I/O) link has required advanced equalization and modulation techniques to mitigate inter-symbol interference (ISI) caused by multi-Gb/s signaling over band-limited channels. Increasing demands for transceiver power and area complexity has leveraged on-going interest in analog-to-digital converter (ADC) based link, which allows for robust equalization and flexible adaptation to advanced signaling. With diverse options in ISI control techniques, link performance analysis for complicated transceiver architectures is very important. This work presents advanced statistical modeling for ADC-based link, performance comparison of existing modulation and equalization techniques, and proposed hybrid ADC-based receiver that achieves further power saving in digital equalization. Statistical analysis precisely estimates high-speed link margins at given implementation constrains and low target bit-error-rate (BER), typically ranges from 1e-12 to 1e-15, by applying proper statistical bound of noise and distortion. The proposed statistical ADC-based link modeling utilizes bounded probability density function (PDF) of limited quantization distortion (4-6 bits) through digital feed-forward and decision feedback equalizers (FFE-DFE) to improve low target BER estimation. Based on statistical modeling, this work surveys the impact of insufficient equalization, jitter and crosstalk on modulation selection among two and four level pulse amplitude modulation (PAM-2 and PAM-4, respectively) and duobinary, and ADC resolution reduction performance by partial analog equalizer (PAE). While the information of channel loss at effective Nyquist frequency and signaling constellation loss initially guides modulation selection, the statistical analysis results show that PAM-4 best tolerates jitter and crosstalk, and duobinary requires the least equalization complexity. Meanwhile, despite robust digital equalization, high-speed ADC complexity and power consumption is still a critical bottleneck, so that PAE is necessitated to reduce ADC resolution requirement. Statistical analysis presents up to 8-bit resolution is required in 12.5Gb/s data communications at 46dB of channel loss without PAE, while 5-bit ADC is enough with 3-tap FFE PAE. For optimal ADC resolution reduction by PAE, digital equalizer complexity also increases to provide enough margin tolerating significant quantization distortion. The proposed hybrid receiver defines unreliable signal thresholds by statistical analysis and selectively takes additional digital equalization to save potentially increasing dynamic power consumption in digital. Simulation results report that the hybrid receiver saves at least 64% of digital equalization power with 3-tap FFE PAE in 12.5Gb/s data rate and up to 46dB loss channels. Finally, this work shows the use of embedded-DFE ADC in the hybrid receiver is limited by error propagation

    Adaptive Receiver Design for High Speed Optical Communication

    Get PDF
    Conventional input/output (IO) links consume power, independent of changes in the bandwidth demand by the system they are deployed in. As the system is designed to satisfy the peak bandwidth demand, most of the time the IO links are idle but still consuming power. In big data centers, the overall utilization ratio of IO links is less than 10%, corresponding to a large amount of energy wasted for idle operation. This work demonstrates a 60 Gb/s high sensitivity non-return-to-zero (NRZ) optical receiver in 14 nm FinFET technology with less than 7 ns power-on time. The power on time includes the data detection, analog bias settling, photo-diode DC current cancellation, and phase locking by the clock and data recovery circuit (CDR). The receiver autonomously detects the data demand on the link via a proposed link protocol and does not require any external enable or disable signals. The proposed link protocol is designed to minimize the off-state power consumption and power-on time of the link. In order to achieve high data-rate and high-sensitivity while maintaining the power budget, a 1-tap decision feedback equalization method is applied in digital domain. The sensitivity is measured to be -8 dBm, -11 dBm, and -13 dBm OMA (optical modulation amplitude) at 60 Gb/s, 48 Gb/s, and 32 Gb/s data rates, respectively. The energy efficiency in always-on mode is around 2.2 pJ/bit for all data-rates with the help of supply and bias scaling. The receiver incorporates a phase interpolator based clock-and-data recovery circuit with approximately 80 MHz jitter-tolerance corner frequency, thanks to the low-latency full custom CDR logic design. This work demonstrates the fastest ever reported CMOS optical receiver and runs almost at twice the data-rate of the state-of-the-art CMOS optical receiver by the time of the publication. The data-rate is comparable to BiCMOS optical receivers but at a fraction of the power consumption
    corecore