670 research outputs found

    Amplifier Architectures for Wireless Communication Systems

    Get PDF
    Ever-increasing demand in modern wireless communication systems leads researchers to focus on design challenges on one of the main components of RF transmitters and receivers, namely amplifiers. On the transmitter side, enhanced efficiency and broader bandwidth over single and multiple bands on power amplifiers will help to have superior performance in communication systems. On the other hand, for the receiver side, having low noise and high gain will be necessary to ensure good quality transmission over such systems. In light of these considerations, a unique approach in design methodologies are studied with low noise amplifiers (LNAs) for RF receivers and the Doherty technique is analyzed for efficiency enhancement for power amplifiers (PA) on the transmitters. This work can be outlined in two parts. In the first part, Low Noise RF amplifier designs with Bipolar Junction Transistor (BJT) are studied to achieve better performing LNAs for receivers. The aim is to obtain a low noise figure while optimizing the bandwidth and achieving a maximum available gain. There are two designs that are operating at different center frequencies and utilizing different transistors. The first design is a wideband low-noise amplifier operating at 2 GHz with a high power BJT. The proposed design uses only distributed elements to realize the input and output matching networks. Additionally, a passive DC bias network is used instead of an active DC bias network to avoid possible complications due to the lumped elements parasitic effects. The matching networks are designed based on the reflection coefficients that are derived based on the transistor’s available regions. The second design is a low voltage standing wave ratio (VSWR) amplifier with a low noise figure operating at 3 GHz. This design is following the same method as in the first design. Both these amplifiers are designed to operate in broadband applications and can be good candidates for base stations. The second part of this work focuses on the transmitter side of communication systems. For this part, Doherty Power Amplifier (DPA) is analyzed as an efficiency enhancement technique for PAs. A modified architecture is proposed to have wider bandwidth and higher efficiency. In the proposed design, the quarter-wave impedance inverter was eliminated. The input and the output of the main and peak amplifiers are matched to the load directly. Additionally, the input and output matching networks are realized only using distributed elements. The selected transistor for this design is a 10 W Gallium Nitride (GaN). The fabricated amplifier operates at the center frequency of 2 GHz and provides 40% fractional bandwidth, 54% of maximum power-added efficiency, and 12.5 dB or better small-signal gain. The design is showing promising results to be a good candidate for better-performing transmitters over the L- and S- band

    Radio Frequency and Millimeter Wave Circuit Component Design with SiGe BiCMOS Technology

    Get PDF
    The objective of this research is to study and leverage the unique properties and advantages of silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) integrated circuit technologies to better design radio frequency (RF) and millimeter wave (mm-wave) circuit components. With recent developments, the high yield and modest cost silicon-based semiconductor technologies have proven to be attractive and cost-effective alternatives to high-performance III-V technology platforms. Between SiGe bipolar complementary metal-oxide-semiconductor (BiCMOS) technology and advanced RF complementary metal-oxide-semiconductor (CMOS) technology, the fundamental device-level differences between SiGe HBTs and field-effect transistors (FETs) grant SiGe HBTs clear advantages as well as unique design concerns. The work presented in this dissertation identifies several advantages and challenges on design using SiGe HBTs and provides design examples that exploit and address these unique benefits and problems with circuit component designs using SiGe HBTs.Ph.D

    Passive and active circuits in cmos technology for rf, microwave and millimeter wave applications

    Get PDF
    The permeation of CMOS technology to radio frequencies and beyond has fuelled an urgent need for a diverse array of passive and active circuits that address the challenges of rapidly emerging wireless applications. While traditional analog based design approaches satisfy some applications, the stringent requirements of newly emerging applications cannot necessarily be addressed by existing design ideas and compel designers to pursue alternatives. One such alternative, an amalgamation of microwave and analog design techniques, is pursued in this work. A number of passive and active circuits have been designed using a combination of microwave and analog design techniques. For passives, the most crucial challenge to their CMOS implementation is identified as their large dimensions that are not compatible with CMOS technology. To address this issue, several design techniques – including multi-layered design and slow wave structures – are proposed and demonstrated through experimental results after being suitably tailored for CMOS technology. A number of novel passive structures - including a compact 10 GHz hairpin resonator, a broadband, low loss 25-35 GHz Lange coupler, a 25-35 GHz thin film microstrip (TFMS) ring hybrid, an array of 0.8 nH and 0.4 nH multi-layered high self resonant frequency (SRF) inductors are proposed, designed and experimentally verified. A number of active circuits are also designed and notable experimental results are presented. These include 3-10 GHz and DC-20 GHz distributed low noise amplifiers (LNA), a dual wideband Low noise amplifier and 15 GHz distributed voltage controlled oscillators (DVCO). Distributed amplifiers are identified as particularly effective in the development of wideband receiver front end sub-systems due to their gain flatness, excellent matching and high linearity. The most important challenge to the implementation of distributed amplifiers in CMOS RFICs is identified as the issue of their miniaturization. This problem is solved by using integrated multi-layered inductors instead of transmission lines to achieve over 90% size compression compared to earlier CMOS implementations. Finally, a dual wideband receiver front end sub-system is designed employing the miniaturized distributed amplifier with resonant loads and integrated with a double balanced Gilbert cell mixer to perform dual band operation. The receiver front end measured results show 15 dB conversion gain, and a 1-dB compression point of -4.1 dBm in the centre of band 1 (from 3.1 to 5.0 GHz) and -5.2 dBm in the centre of band 2 (from 5.8 to 8 GHz) with input return loss less than 10 dB throughout the two bands of operation
    • …
    corecore