64 research outputs found

    フロアプラン指向高位合成手法とイジング計算機応用に関する研究

    Get PDF
    早大学位記番号:新7790早稲田大

    Autonomous Probabilistic Coprocessing with Petaflips per Second

    Full text link
    In this paper we present a concrete design for a probabilistic (p-) computer based on a network of p-bits, robust classical entities fluctuating between -1 and +1, with probabilities that are controlled through an input constructed from the outputs of other p-bits. The architecture of this probabilistic computer is similar to a stochastic neural network with the p-bit playing the role of a binary stochastic neuron, but with one key difference: there is no sequencer used to enforce an ordering of p-bit updates, as is typically required. Instead, we explore \textit{sequencerless} designs where all p-bits are allowed to flip autonomously and demonstrate that such designs can allow ultrafast operation unconstrained by available clock speeds without compromising the solution's fidelity. Based on experimental results from a hardware benchmark of the autonomous design and benchmarked device models, we project that a nanomagnetic implementation can scale to achieve petaflips per second with millions of neurons. A key contribution of this paper is the focus on a hardware metric - flips per second - as a problem and substrate-independent figure-of-merit for an emerging class of hardware annealers known as Ising Machines. Much like the shrinking feature sizes of transistors that have continually driven Moore's Law, we believe that flips per second can be continually improved in later technology generations of a wide class of probabilistic, domain specific hardware.Comment: 13 pages, 8 figures, 1 tabl

    Adiabatic evolution on a spatial-photonic Ising machine

    Get PDF
    Combinatorial optimization problems are crucial for widespread applications but remain difficult to solve on a large scale with conventional hardware. Novel optical platforms, known as coherent or photonic Ising machines, are attracting considerable attention as accelerators on optimization tasks formulable as Ising models. Annealing is a well-known technique based on adiabatic evolution for finding optimal solutions in classical and quantum systems made by atoms, electrons, or photons. Although various Ising machines employ annealing in some form, adiabatic computing on optical settings has been only partially investigated. Here, we realize the adiabatic evolution of frustrated Ising models with 100 spins programmed by spatial light modulation. We use holographic and optical control to change the spin couplings adiabatically, and exploit experimental noise to explore the energy landscape. Annealing enhances the convergence to the Ising ground state and allows to find the problem solution with probability close to unity. Our results demonstrate a photonic scheme for combinatorial optimization in analogy with adiabatic quantum algorithms and enforced by optical vector-matrix multiplications and scalable photonic technology.Comment: 9 pages, 4 figure
    corecore