1,508 research outputs found

    FFT for the APE Parallel Computer

    Get PDF
    We present a parallel FFT algorithm for SIMD systems following the `Transpose Algorithm' approach. The method is based on the assignment of the data field onto a 1-dimensional ring of systolic cells. The systolic array can be universally mapped onto any parallel system. In particular for systems with next-neighbour connectivity our method has the potential to improve the efficiency of matrix transposition by use of hyper-systolic communication. We have realized a scalable parallel FFT on the APE100/Quadrics massively parallel computer, where our implementation is part of a 2-dimensional hydrodynamics code for turbulence studies. A possible generalization to 4-dimensional FFT is presented, having in mind QCD applications.Comment: 17 pages, 13 figures, figures include

    A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization

    Full text link
    A new generation of radio telescopes is achieving unprecedented levels of sensitivity and resolution, as well as increased agility and field-of-view, by employing high-performance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second. To meet this challenge, we have developed a general purpose correlator architecture using standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array (FPGA) chips. These chips are programmed using open-source signal processing libraries we have developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, with correlators foremost among them,and facilitates upgrading to new generations of processing technology. We present several correlator deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes parameter application deployed on the Precision Array for Probing the Epoch of Reionization.Comment: Accepted to Publications of the Astronomy Society of the Pacific. 31 pages. v2: corrected typo, v3: corrected Fig. 1

    High performance Python for direct numerical simulations of turbulent flows

    Full text link
    Direct Numerical Simulations (DNS) of the Navier Stokes equations is an invaluable research tool in fluid dynamics. Still, there are few publicly available research codes and, due to the heavy number crunching implied, available codes are usually written in low-level languages such as C/C++ or Fortran. In this paper we describe a pure scientific Python pseudo-spectral DNS code that nearly matches the performance of C++ for thousands of processors and billions of unknowns. We also describe a version optimized through Cython, that is found to match the speed of C++. The solvers are written from scratch in Python, both the mesh, the MPI domain decomposition, and the temporal integrators. The solvers have been verified and benchmarked on the Shaheen supercomputer at the KAUST supercomputing laboratory, and we are able to show very good scaling up to several thousand cores. A very important part of the implementation is the mesh decomposition (we implement both slab and pencil decompositions) and 3D parallel Fast Fourier Transforms (FFT). The mesh decomposition and FFT routines have been implemented in Python using serial FFT routines (either NumPy, pyFFTW or any other serial FFT module), NumPy array manipulations and with MPI communications handled by MPI for Python (mpi4py). We show how we are able to execute a 3D parallel FFT in Python for a slab mesh decomposition using 4 lines of compact Python code, for which the parallel performance on Shaheen is found to be slightly better than similar routines provided through the FFTW library. For a pencil mesh decomposition 7 lines of code is required to execute a transform

    Architectures for Dynamic Data Scaling in 2/4/8K Pipeline FFT Cores

    Get PDF
    This paper presents architectures for supporting dynamic data scaling in pipeline fast Fourier transforms (FFTs), suitable when implementing large size FFTs in applications such as digital video broadcasting and digital holographic imaging. In a pipeline FFT, data is continuously streaming and must, hence, be scaled without stalling the dataflow. We propose a hybrid floating-point scheme with tailored exponent datapath, and a co-optimized architecture between hybrid floating point and block floating point (BFP) to reduce memory requirements for 2-D signal processing. The presented co-optimization generates a higher signal-to-quantization-noise ratio and requires less memory than for instance convergent BFP. A 2048-point pipeline FFT has been fabricated in a standard-CMOS process from AMI Semiconductor (Lenart and Ă–wall, 2003), and a field-programmable gate array prototype integrating a 2-D FFT core in a larger design shows that the architecture is suitable for image reconstruction in digital holographic imaging

    FPGA Frequency Domain Based Gps Coarse Acquisition Processor using FFT

    Get PDF
    The Global Positioning System or GPS is a satellite based technology that has gained widespread use worldwide in civilian and military applications. Direct Sequence Spread spectrum (DSSS) is the method whereby the data transmitted by the satellite and received by user is kept secure, low power and relatively noise-immune. The first step required in the GPS operation is to perform a lock on the incoming signal, both with respect to time synchronization and frequency resolution. Because of the need for reduced time to lock and also reduced hardware, algorithms based in the frequency domain have been developed. These algorithms take advantage of the time to frequency matrix operation known as the fast Fourier transform or FFT. For this thesis, a Direct Sequence Spread Spectrum Coarse Acquisition code processor based on the FFT was implemented in VHDL and targeted to a Xilinx Virtex –II Pro Field Programmable Gate Array (FPGA). The use of the FFT allows simultaneous lock on coarse acquisition (C/A) code and carrier frequency. Because of hardware limitations, a novel technique of sub-sampling is used in this system to obtain data block sizes that match hardware limitations. In addition, design challenges related to scheduling and timing were addressed, allowing a system with 19 pipeline stages to be built. The system, which fits on a Xilinx Virtex-II pro XC2VP70 FPGA, uses 10 ms of data to perform the lock with 5.5 ms of processing time at 100 MHz and theoretically can operate on signals 20 db below the noise floor

    An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver

    Full text link
    We propose an efficient algorithm for the immersed boundary method on distributed-memory architectures, with the computational complexity of a completely explicit method and excellent parallel scaling. The algorithm utilizes the pseudo-compressibility method recently proposed by Guermond and Minev [Comptes Rendus Mathematique, 348:581-585, 2010] that uses a directional splitting strategy to discretize the incompressible Navier-Stokes equations, thereby reducing the linear systems to a series of one-dimensional tridiagonal systems. We perform numerical simulations of several fluid-structure interaction problems in two and three dimensions and study the accuracy and convergence rates of the proposed algorithm. For these problems, we compare the proposed algorithm against other second-order projection-based fluid solvers. Lastly, the strong and weak scaling properties of the proposed algorithm are investigated

    VLSI Implementation of Reconfigurable FFT Processor Using Vedic Mathematics

    Get PDF
    Fast Fourier transform has been used in wide range of applications such as digital signal processing and wireless communications. In this we present a implementation of reconfigurable FFT processor using single path delay feedback architecture. To eliminate the use of read only memory’s (ROM’S). These are used to store the twiddle factors. To achieve the ROM-less FFT processor the proposed architecture applies the bit parallel multipliers and reconfigurable complex multipliers, thus consuming less power. The proposed architecture, Reconfigurable FFT processor based on Vedic mathematics is designed, simulated and implemented using VIRTEX-5 FPGA. Urdhva Triyakbhyam algorithm is an ancient Vedic mathematic sutra, which is used to achieve the high performance. This reconfigurable DIF-FFT is having the high speed and small area as compared with other conventional DIF-FF
    • …
    corecore