83 research outputs found

    A novel synchronizer for a 17.9ps Nutt Time-to-Digital Converter implemented on FPGA

    Get PDF
    The evolution of Field-Programmable Gate Array (FPGA) technology triggered the appearance of FPGAs with higher operating frequencies and large number of resources. Simultaneously, the evolution of the FPGAs design tools has simplified the development process, reducing the time to market. These factors made FPGA platforms attractive for several applications, including time-of-flight applications that require the implementation of Time-to-Digital Converters (TDC). This work presents a Nutt TDC, based on a coarse counter and a Tapped Delay Line, with 17.9 picoseconds resolution and 5.4 LSB differential nonlinearity (DNL), implemented in a Xilinx Zynq-7000 FPGA, to be used on LiDAR applications and pull-in time measuring in MEMS accelerometers systems.This work was supported by a Portuguese Scholarship from FCT - Fundação para a Ciência e Tecnologia and Bosch Car Multimedia, under the Advanced Engineering Systems for Industry (AESI) doctoral program. (Scholarship ID: PDE/BDE/114562/2016) and COMPETE and FCT: POCI- 01-0145-FEDER-007043 within the Project Scope: UID/CEC/00319/201

    Multi-channel, low nonlinearity time-to-digital converters based on 20nm and 28nm FPGAs

    Get PDF
    Abstract—This paper presents low nonlinearity, compact and multi-channel time-to-digital converters (TDC) in Xilinx 28nm Virtex 7 and 20nm UltraScale FPGAs. The proposed TDCs integrate several innovative methods that we have developed: 1) the sub-tapped delay line (TDL) averaging topology, 2) tap timing tests, 3) a direct compensation architecture and 4) a mixed calibration method. The code density tests show that the proposed TDCs have much better linearity performances than previously reported ones. Our approach is cost-effective in terms of the consumption of logic resources. To demonstrate this, we implemented 96 channel TDCs in both FPGAs, using less than 25 % of the logic resources. The achieved least significant bit (LSB) is 10.5ps for Virtex 7 and 5.0 ps for UltraScale FPGAs. After the compensation and calibration, the differential nonlinearity (DNL) is within [-0.05, 0.08] LSB with σDNL = 0.01 LSB, and the integral nonlinearity (INL) is within [-0.09, 0.11] LSB with σINL = 0.04 LSB for the Virtex 7 FPGA. The DNL is within [-0.12, 0.11] LSB with σDNL = 0.03 LSB, and the INL is within [-0.15, 0.48] LSB with σINL = 0.20 LSB for the UltraScale FPGA

    Efficient time-to-digital converters in 20 nm FPGAs with wave union methods

    Get PDF
    The wave union (WU) method is a well-known method in time-to-digital converters (TDCs) and can improve TDC performances without consuming extra logic resources. However, a famous earlier study concluded that the WU method is not suitable for UltraScale field-programmable gate array (FPGA) devices, due to more severe bubble errors. This paper proves otherwise and presents new strategies to pursue high-resolution TDCs in Xilinx UltraScale 20 nm FPGAs. Combining our new sub-tapped delay line (sub-TDL) architecture (effective in removing bubbles and zero-width bins) and the WU method, we found that the wave union method is still powerful in UltraScale devices. We also compared the proposed TDC with the TDC combining the dual sampling (DS) structure and the sub-TDL technique. A binning method is introduced to improve the linearity. Moreover, we derived a formula of the total measurement uncertainties for a single-stage TDL-TDC to obtain its root-mean-square (RMS) resolution. Compared with previously published FPGA-TDCs, we presented (for the first time) much more detailed precision analysis for single-TDL TDCs

    The BrightEyes-TTM: an open-source time-tagging module for fluorescence lifetime imaging microscopy applications

    Get PDF
    The aim of this Ph.D. work is to reason and show how an open-source multi-channel and standalone time-tagging device was developed, validated and used in combination with a new generation of single-photon array detectors to pursue super-resolved time-resolved fluorescence lifetime imaging measurements. Within the compound of time-resolved fluorescence laser scanning microscopy (LSM) techniques, fluorescence lifetime imaging microscopy (FLIM) plays a relevant role in the life-sciences field, thanks to its ability of detecting functional changes within the cellular micro-environment. The recent advancements in photon detection technologies, such as the introduction of asynchronous read-out single-photon avalanche diode (SPAD) array detectors, allow to image a fluorescent sample with spatial resolution below the diffraction limit, at the same time, yield the possibility of accessing the single-photon information content allowing for time-resolved FLIM measurements. Thus, super-resolved FLIM experiments can be accomplished using SPAD array detectors in combination with pulsed laser sources and special data acquisition systems (DAQs), capable of handling a multiplicity of inputs and dealing with the single-photons readouts generated by SPAD array detectors. Nowadays, the commercial market lacks a true standalone, multi-channel, single-board, time-tagging and affordable DAQ device specifically designed for super-resolved FLIM experiments. Moreover, in the scientific community, no-efforts have been placed yet in building a device that can compensate such absence. That is why, within this Ph.D. project, an open-source and low-cost device, the so-called BrightEyes-TTM (time tagging module), was developed and validated both for fluorescence lifetime and time-resolved measurements in general. The BrightEyes-TTM belongs to a niche of DAQ devices called time-to-digital converters (TDCs). The field-gate programmable array (FPGA) technology was chosen for implementing the BrightEyes-TTM thanks to its reprogrammability and low cost features. The literature reports several different FPGA-based TDC architectures. Particularly, the differential delay-line TDC architecture turned out to be the most suitable for this Ph.D. project as it offers an optimal trade-off between temporal precision, temporal range, temporal resolution, dead-time, linearity, and FPGA resources, which are all crucial characteristics for a TDC device. The goal of the project of pursuing a cost-effective and further-upgradable open-source time-tagging device was achieved as the BrigthEyes-TTM was developed and assembled using low-cost commercially available electronic development kits, thus allowing for the architecture to be easily reproduced. BrightEyes-TTM was deployed on a FPGA development board which was equipped with a USB 3.0 chip for communicating with a host-processing unit and a multi-input/output custom-built interface card for interconnecting the TTM with the outside world. Licence-free softwares were used for acquiring, reconstructing and analyzing the BrightEyes-TTM time-resolved data. In order to characterize the BrightEyes-TTM performances and, at the same time, validate the developed multi-channel TDC architecture, the TTM was firstly tested on a bench and then integrated into a fluorescent LSM system. Yielding a 30 ps single-shot precision and linearity performances that allows to be employed for actual FLIM measurements, the BrightEyes-TTM, which also proved to acquire data from many channels in parallel, was ultimately used with a SPAD array detector to perform fluorescence imaging and spectroscopy on biological systems. As output of the Ph.D. work, the BrightEyes-TTM was released on GitHub as a fully open-source project with two aims. The principal aim is to give to any microscopy and life science laboratory the possibility to implement and further develop single-photon-based time-resolved microscopy techniques. The second aim is to trigger the interest of the microscopy community, and establish the BrigthEyes-TTM as a new standard for single-photon FLSM and FLIM experiments

    On-chip test clock validation using a time-to-digital converter in FPGAs

    Get PDF
    While on-chip delay measurement combining logic BIST with a variable test clock is an effective way to secure field reliability of VLSI/FPGAs, validation of the variable test clock generated on the chip is important to guarantee measurement accuracy. This paper addresses a method of on-chip test clock validation using a TDC (Time-to-Digital Converter) for FPGAs. The proposed method has two operation modes, one is a resolution measurement mode and the other is a phase difference measurement mode. The resolution measurement mode is performed first to check the resolution of the TDC circuit. The phase difference measurement mode checks the timing difference between the original clock and the generated test clock. Evaluation experiments using a real FPGA device shows that the resolution of the proposed clock validation method using a TDC is 50.46 ps. For a variable test clock with resolution of 96.15 ps, it was confirmed that INL (Integral Non-Linearity) of the clock is within 10% and it was inconsistent with a result observed by an oscilloscope.The 3rd International Test Conference in Asia (ITC-Asia 2019), September 3-5, 2019Tokyo Denki University, Tokyo, Japa

    Strategies towards high performance (high-resolution/linearity) time-to-digital converters on field-programmable gate arrays

    Get PDF
    Time-correlated single-photon counting (TCSPC) technology has become popular in scientific research and industrial applications, such as high-energy physics, bio-sensing, non-invasion health monitoring, and 3D imaging. Because of the increasing demand for high-precision time measurements, time-to-digital converters (TDCs) have attracted attention since the 1970s. As a fully digital solution, TDCs are portable and have great potential for multichannel applications compared to bulky and expensive time-to-amplitude converters (TACs). A TDC can be implemented in ASIC and FPGA devices. Due to the low cost, flexibility, and short development cycle, FPGA-TDCs have become promising. Starting with a literature review, three original FPGA-TDCs with outstanding performance are introduced. The first design is the first efficient wave union (WU) based TDC implemented in Xilinx UltraScale (20 nm) FPGAs with a bubble-free sub-TDL structure. Combining with other existing methods, the resolution is further enhanced to 1.23 ps. The second TDC has been designed for LiDAR applications, especially in driver-less vehicles. Using the proposed new calibration method, the resolution is adjustable (50, 80, and 100 ps), and the linearity is exceptionally high (INL pk-pk and INL pk-pk are lower than 0.05 LSB). Meanwhile, a software tool has been open-sourced with a graphic user interface (GUI) to predict TDCs’ performance. In the third TDC, an onboard automatic calibration (AC) function has been realized by exploiting Xilinx ZYNQ SoC architectures. The test results show the robustness of the proposed method. Without the manual calibration, the AC function enables FPGA-TDCs to be applied in commercial products where mass production is required.Time-correlated single-photon counting (TCSPC) technology has become popular in scientific research and industrial applications, such as high-energy physics, bio-sensing, non-invasion health monitoring, and 3D imaging. Because of the increasing demand for high-precision time measurements, time-to-digital converters (TDCs) have attracted attention since the 1970s. As a fully digital solution, TDCs are portable and have great potential for multichannel applications compared to bulky and expensive time-to-amplitude converters (TACs). A TDC can be implemented in ASIC and FPGA devices. Due to the low cost, flexibility, and short development cycle, FPGA-TDCs have become promising. Starting with a literature review, three original FPGA-TDCs with outstanding performance are introduced. The first design is the first efficient wave union (WU) based TDC implemented in Xilinx UltraScale (20 nm) FPGAs with a bubble-free sub-TDL structure. Combining with other existing methods, the resolution is further enhanced to 1.23 ps. The second TDC has been designed for LiDAR applications, especially in driver-less vehicles. Using the proposed new calibration method, the resolution is adjustable (50, 80, and 100 ps), and the linearity is exceptionally high (INL pk-pk and INL pk-pk are lower than 0.05 LSB). Meanwhile, a software tool has been open-sourced with a graphic user interface (GUI) to predict TDCs’ performance. In the third TDC, an onboard automatic calibration (AC) function has been realized by exploiting Xilinx ZYNQ SoC architectures. The test results show the robustness of the proposed method. Without the manual calibration, the AC function enables FPGA-TDCs to be applied in commercial products where mass production is required

    A spread spectrum approach to time-domain near-infrared diffuse optical imaging using inexpensive optical transceiver modules

    Get PDF
    We introduce a compact time-domain system for near-infrared spectroscopy using a spread spectrum technique. The proof-of-concept single channel instrument utilises a low-cost commercially available optical transceiver module as a light source, controlled by a Kintex 7 field programmable gate array (FPGA). The FPGA modulates the optical transceiver with maximum-length sequences at line rates up to 10Gb/s, allowing us to achieve an instrument response function with full width at half maximum under 600ps. The instrument is characterised through a set of detailed phantom measurements as well as proof-of-concept in vivo measurements, demonstrating performance comparable with conventional pulsed time-domain near-infrared spectroscopy systems

    CMOS SPAD-based image sensor for single photon counting and time of flight imaging

    Get PDF
    The facility to capture the arrival of a single photon, is the fundamental limit to the detection of quantised electromagnetic radiation. An image sensor capable of capturing a picture with this ultimate optical and temporal precision is the pinnacle of photo-sensing. The creation of high spatial resolution, single photon sensitive, and time-resolved image sensors in complementary metal oxide semiconductor (CMOS) technology offers numerous benefits in a wide field of applications. These CMOS devices will be suitable to replace high sensitivity charge-coupled device (CCD) technology (electron-multiplied or electron bombarded) with significantly lower cost and comparable performance in low light or high speed scenarios. For example, with temporal resolution in the order of nano and picoseconds, detailed three-dimensional (3D) pictures can be formed by measuring the time of flight (TOF) of a light pulse. High frame rate imaging of single photons can yield new capabilities in super-resolution microscopy. Also, the imaging of quantum effects such as the entanglement of photons may be realised. The goal of this research project is the development of such an image sensor by exploiting single photon avalanche diodes (SPAD) in advanced imaging-specific 130nm front side illuminated (FSI) CMOS technology. SPADs have three key combined advantages over other imaging technologies: single photon sensitivity, picosecond temporal resolution and the facility to be integrated in standard CMOS technology. Analogue techniques are employed to create an efficient and compact imager that is scalable to mega-pixel arrays. A SPAD-based image sensor is described with 320 by 240 pixels at a pitch of 8μm and an optical efficiency or fill-factor of 26.8%. Each pixel comprises a SPAD with a hybrid analogue counting and memory circuit that makes novel use of a low-power charge transfer amplifier. Global shutter single photon counting images are captured. These exhibit photon shot noise limited statistics with unprecedented low input-referred noise at an equivalent of 0.06 electrons. The CMOS image sensor (CIS) trends of shrinking pixels, increasing array sizes, decreasing read noise, fast readout and oversampled image formation are projected towards the formation of binary single photon imagers or quanta image sensors (QIS). In a binary digital image capture mode, the image sensor offers a look-ahead to the properties and performance of future QISs with 20,000 binary frames per second readout with a bit error rate of 1.7 x 10-3. The bit density, or cumulative binary intensity, against exposure performance of this image sensor is in the shape of the famous Hurter and Driffield densitometry curves of photographic film. Oversampled time-gated binary image capture is demonstrated, capturing 3D TOF images with 3.8cm precision in a 60cm range

    Timing Signals and Radio Frequency Distribution Using Ethernet Networks for High Energy Physics Applications

    Get PDF
    Timing networks are used around the world in various applications from telecommunications systems to industrial processes, and from radio astronomy to high energy physics. Most timing networks are implemented using proprietary technologies at high operation and maintenance costs. This thesis presents a novel timing network capable of distributed timing with subnanosecond accuracy. The network, developed at CERN and codenamed “White- Rabbit”, uses a non-dedicated Ethernet link to distribute timing and data packets without infringing the sub-nanosecond timing accuracy required for high energy physics applications. The first part of this thesis proposes a new digital circuit capable of measuring time differences between two digital clock signals with sub-picosecond time resolution. The proposed digital circuit measures and compensates for the phase variations between the transmitted and received network clocks required to achieve the sub-nanosecond timing accuracy. Circuit design, implementation and performance verification are reported. The second part of this thesis investigates and proposes a new method to distribute radio frequency (RF) signals over Ethernet networks. The main goal of existing distributed RF schemes, such as Radio-Over-Fibre or Digitised Radio-Over-Fibre, is to increase the bandwidth capacity taking advantage of the higher performance of digital optical links. These schemes tend to employ dedicated and costly technologies, deemed unnecessary for applications with lower bandwidth requirements. This work proposes the distribution of RF signals over the “White-Rabbit” network, to convey phase and frequency information from a reference base node to a large numbers of remote nodes, thus achieving high performance and cost reduction of the timing network. Hence, this thesis reports the design and implementation of a new distributed RF system architecture; analysed and tested using a purpose-built simulation environment, with results used to optimise a new bespoke FPGA implementation. The performance is evaluated through phase-noise spectra, the Allan-Variance, and signalto- noise ratio measurements of the distributed signals

    A portable device for time-resolved fluorescence based on an array of CMOS SPADs with integrated microfluidics

    Get PDF
    [eng] Traditionally, molecular analysis is performed in laboratories equipped with desktop instruments operated by specialized technicians. This paradigm has been changing in recent decades, as biosensor technology has become as accurate as desktop instruments, providing results in much shorter periods and miniaturizing the instrumentation, moving the diagnostic tests gradually out of the central laboratory. However, despite the inherent advantages of time-resolved fluorescence spectroscopy applied to molecular diagnosis, it is only in the last decade that POC (Point Of Care) devices have begun to be developed based on the detection of fluorescence, due to the challenge of developing high-performance, portable and low-cost spectroscopic sensors. This thesis presents the development of a compact, robust and low-cost system for molecular diagnosis based on time-resolved fluorescence spectroscopy, which serves as a general-purpose platform for the optical detection of a variety of biomarkers, bridging the gap between the laboratory and the POC of the fluorescence lifetime based bioassays. In particular, two systems with different levels of integration have been developed that combine a one-dimensional array of SPAD (Single-Photon Avalanch Diode) pixels capable of detecting a single photon, with an interchangeable microfluidic cartridge used to insert the sample and a laser diode Pulsed low-cost UV as a source of excitation. The contact-oriented design of the binomial formed by the sensor and the microfluidic, together with the timed operation of the sensors, makes it possible to dispense with the use of lenses and filters. In turn, custom packaging of the sensor chip allows the microfluidic cartridge to be positioned directly on the sensor array without any alignment procedure. Both systems have been validated, determining the decomposition time of quantum dots in 20 nl of solution for different concentrations, emulating a molecular test in a POC device.[cat] Tradicionalment, l'anàlisi molecular es realitza en laboratoris equipats amb instruments de sobretaula operats per tècnics especialitzats. Aquest paradigma ha anat canviant en les últimes dècades, a mesura que la tecnologia de biosensor s'ha tornat tan precisa com els instruments de sobretaula, proporcionant resultats en períodes molt més curts de temps i miniaturitzant la instrumentació, permetent així, traslladar gradualment les proves de diagnòstic fora de laboratori central. No obstant això i malgrat els avantatges inherents de l'espectroscòpia de fluorescència resolta en el temps aplicada a la diagnosi molecular, no ha estat fins a l'última dècada que s'han començat a desenvolupar dispositius POC (Point Of Care) basats en la detecció de la fluorescència, degut al desafiament que suposa el desenvolupament de sensors espectroscòpics d'alt rendiment, portàtils i de baix cost. Aquesta tesi presenta el desenvolupament d'un sistema compacte, robust i de baix cost per al diagnòstic molecular basat en l'espectroscòpia de fluorescència resolta en el temps, que serveixi com a plataforma d'ús general per a la detecció òptica d'una varietat de biomarcadors, tancant la bretxa entre el laboratori i el POC dels bioassaigs basats en l'anàlisi de la pèrdua de la fluorescència. En particular, s'han desenvolupat dos sistemes amb diferents nivells d'integració que combinen una matriu unidimensional de píxels SPAD (Single-Photon Avalanch Diode) capaços de detectar un sol fotó, amb un cartutx microfluídic intercanviable emprat per inserir la mostra, així com un díode làser UV premut de baix cost com a font d'excitació. El disseny orientat a la detecció per contacte de l'binomi format pel sensor i la microfluídica, juntament amb l'operació temporitzada dels sensors, permet prescindir de l'ús de lents i filtres. Al seu torn, l'empaquetat a mida de l'xip sensor permet posicionar el cartutx microfluídic directament sobre la matriu de sensors sense cap procediment d'alineament. Tots dos sistemes han estat validats determinant el temps de descomposició de "quantum dots" en 20 nl de solució per a diferents concentracions, emulant així un assaig molecular en un dispositiu POC
    corecore