1 research outputs found

    A Study on Energy-Efficient Inductor Current Controls for Maximum Energy Delivery in Battery-free Buck Converter

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ๊น€์žฌํ•˜.A discontinuous conduction mode (DCM) buck converter, which acts as a voltage regulator in battery-free applications, is proposed to maximize the ener-gy delivery to the load system. In this work, we focus the energy loss problem during start-up and steady-state operation of the buck converter, which severely limits the energy delivery. Especially, the energy loss problem arises from the fact that there is no constant power source such as a battery and the only a small amount of energy harvested from the ambient energy sources is available. To address such energy loss problem, this dissertation proposes optimal induc-tor current control techniques at each operation to greatly reduce the energy losses. First, a switching-based stepwise capacitor charging scheme is presented that can charge the output capacitor with constant inductor current during start-up operation. By switching the inductor with gradually incrementing duty-cycle ratios in a stepwise fashion, the buck converter can make the inductor current a constant current source, which can greatly reduce the start-up energy loss com-pared to that in the conventional capacitor charging scheme with a voltage source. Second, a variable on-time (VOT) pulse-frequency-modulation (PFM) scheme is presented that can keep the peak inductor current constant during steady-state operation. By adaptively varying the on-time according to the op-erating voltage conditions of the buck converter, it can suppress the voltage ripple and improve the power efficiency even with a small output capacitor. Third, an adaptive off-time positioning zero-crossing detector (AOP-ZCD) is presented that can adaptively position the turn-off timing of the low-side switch close to the zero-inductor-current timing by predicting the inductor current waveform without using a power-hungry continuous-time ZCD. To demonstrate the proposed design concepts, the prototype battery-free wireless remote switch including the piezoelectric energy harvester and the proposed buck converter was fabricated in a 250 nm high-voltage CMOS technology. It can harvest a total energy of 246 ฮผJ from a single button press action of a 300-mm2 lead magnesium niobate-lead titanate (PMN-PT) piezoelectric disc, and deliver more than 200 ฮผJ to the load, which is sufficient to transmit a 4-byte-long message via 2.4-GHz wireless USB channel over a 10-m distance. If such battery-free application does not use the proposed buck converter, the energy losses in-curred at the buck converter would be larger than the energy harvested, and therefore it cannot operate with a single button-pressing action. Furthermore, thanks to the proposed energy efficient buck converter, the battery-free wire-less remote switch can be realized by using a cheaper PZT piezoelectric source, which can achieve a 10ร— cost reduction.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS CONTRIBUTION AND ORGANIZATION 6 CHAPTER 2 OPERATION MODE AND OVERALL ARCHITECTURE 8 2.1 TOPOLOGY SELECTION 8 2.2 PRINCIPLE OF OPERATION 11 2.2.1 BASIC OPERATION IN CCM 12 2.2.2 BASIC OPERATION IN DCM 15 2.3 OPERATION MODE 17 2.4 OVERALL ARCHITECTURE 19 CHAPTER 3 OPTIMAL INDUCTOR CURRENT CONTROLS FOR MAXIMUM ENERGY DELIVERY 23 3.1 CONSTANT INDUCTOR CURRENT CONTROL WITH SWITCHING-BASED STEPWISE CAPACITOR CHARGING SCHEME 24 3.1.1 CONVENTIONAL CHARGING SCHEME WITH A SWITCH 24 3.1.2 ADIABATIC STEPWISE CHARGING 27 3.1.3 PROPOSED START-UP SCHEME 29 3.2 CONSTANT INDUCTOR PEAK CURRENT CONTROL WITH VARIABLE ON-TIME PFM SCHEME 35 3.2.1 BASIC OPERATION OF PFM BUCK CONVERTER 35 3.2.2 CONSTANT ON-TIME PFM SCHEME 39 3.2.3 VARIABLE ON-TIME PFM SCHEME 41 3.3 INDUCTOR CURRENT PREDICTION WITH ADAP-TIVE OFF-TIME POSITIONING ZCD (AOP-ZCD) 44 3.3.1 PREVIOUS SAMPLING-BASED ZCD 44 3.3.2 PROPOSED ADAPTIVE OFF-TIME POSITIONING ZCD 47 CHAPTER 4 CIRCUIT IMPLEMENTATION 49 4.1 CIRCUIT IMPLEMENTATION OF SWITCHING-BASED STEPWISE CAPACITOR CHARGER 49 4.1.1 VOLTAGE DETECTOR (VD) 50 4.1.2 DIGITAL PULSE WIDTH MODULATOR (DPWM) 52 4.1.3 PROGRAMMABLE DUTY-CYCLE CONTROLLER (DCC) 55 4.1.4 SWITCHED CAPACITOR (SC) STEP-DOWN CONVERTER 57 4.2 CIRCUIT IMPLEMENTATION OF VARIABLE ON-TIME PULSE GENERATOR 59 4.3 CIRCUIT IMPLEMENTATION OF ADAPTIVE OFF-TIME POSITIONING ZCD 64 4.3.1 ADAPTIVE OFF-TIME (AOT) PULSE GENERATOR 64 4.3.2 TIMING ERROR DETECTOR AND SHIFT-REGISTER 68 CHAPTER 5 MEASUREMENT RESULTS OF PROPOSED BUCK CONVERTER 70 5.1 SWITCHING-BASED STEPWISE CAPACITOR CHARGER 71 5.2 STEADY-STATE PERFORMANCE WITH VOT PULSE GENERATOR AND AOP-ZCD 74 CHAPTER 6 REALIZATION OF BATTERY-FREE WIRELESS REMOTE SWITCH 84 6.1 KEY BUILDING BLOCKS OF BATTERY-FREE WIRELESS REMOTE SWITCH 85 6.2 PIEZOELECTRIC ENERGY HARVESTER WITH P-SSHI RECTIFIER 86 6.2.1 ANALYSIS ON SINGLE-PULSED ENERGY HARVESTING 88 6.2.2 PROPOSED PIEZOELECTRIC ENERGY HARVESTER 91 6.2.3 CIRCUIT IMPLEMENTATION 93 6.3 MEASUREMENT RESULTS OF BATTERY-FREE WIRELESS SWITCH 96 CHAPTER 7 CONCLUSION 101 BIBLIOGRAPHY 103 ์ดˆ ๋ก 110Docto
    corecore