29 research outputs found

    CMOS Integrated Switched-Mode Transmitters for Wireless Communication

    Get PDF

    Analysis and Design of Energy Efficient Frequency Synthesizers for Wireless Integrated Systems

    Full text link
    Advances in ultra-low power (ULP) circuit technologies are expanding the IoT applications in our daily life. However, wireless connectivity, small form factor and long lifetime are still the key constraints for many envisioned wearable, implantable and maintenance-free monitoring systems to be practically deployed at a large scale. The frequency synthesizer is one of the most power hungry and complicated blocks that not only constraints RF performance but also offers subtle scalability with power as well. Furthermore, the only indispensable off-chip component, the crystal oscillator, is also associated with the frequency synthesizer as a reference. This thesis addresses the above issues by analyzing how phase noise of the LO affect the frequency modulated wireless system in different aspects and how different noise sources in the PLL affect the performance. Several chip prototypes have been demonstrated including: 1) An ULP FSK transmitter with SAR assisted FLL; 2) A ring oscillator based all-digital BLE transmitter utilizing a quarter RF frequency LO and 4X frequency multiplier; and 3) An XO-less BLE transmitter with an RF reference recovery receiver. The first 2 designs deal with noise sources in the PLL loop for ultimate power and cost reduction, while the third design deals with the reference noise outside the PLL and explores a way to replace the XO in ULP wireless edge nodes. And at last, a comprehensive PN theory is proposed as the design guideline.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153420/1/chenxing_1.pd

    Analysis and Design of a Transmitter for Wireless Communications in CMOS Technology

    Get PDF
    The number of wireless devices has grown tremendously over the last decade. Great technology improvements and novel transceiver architectures and circuits have enabled an astonishingly expanding set of radio-frequency applications. CMOS technology played a key role in enabling a large-scale diffusion of wireless devices due to its unique advantages in cost and integration. Novel digital-intensive transceivers have taken full advantage of CMOS technology scaling predicted by Moore's law. Die-shrinking has enabled ubiquitous diffusion of low-cost, small form factor and low power wireless devices. However, Radio Frequency (RF) Power Amplifiers (PA) transceiver functionality is historically implemented in a module which is separated from the CMOS core of the transceiver. The PA is traditionally dictating power and battery life of the transceiver, thus justifying its implementation in a tailored technology. By contrast, a fully integrated CMOS transceiver with no external PA would hugely benefit in terms of reduced area and system complexity. In this work, a fully integrated prototype of a Switched-Capacitor Power Amplifier (SCPA) has been implemented in a 28nm CMOS technology. The SCPA provides the functionalities of a PA and of a Radio-Frequency Digital-to-Analog Converter (RF-DAC) in a monolithic CMOS device. The switching output stage of the SCPA enables this circuital topology to reach high efficiencies and offers excellent power handling capabilities. In this work, the properties of the SCPA are analyzed in an extensive and detailed dissertation. Nowadays Wireless Communications operate in a very crowded spectrum, with strict coexistence requirements, thus demanding a strong linearity to the RF-DAC section of the SCPA. A great part of the work of designing a good SCPA is in fact designing a good RF-DAC. To enhance RF-DAC linearity, a precision of the timing of the elements up to the ps range is required. The use of a single core-supply voltage in the whole circuit including the CMOS inverter of the switching output stage enables the use of minimum size devices, improving accuracy and speed in the timing of the elements. The whole circuit operates therefore on low core-supply voltage. Throughout this work, a detailed analysis carefully describes the electromagnetic structures which maximize power and efficiency of low-voltage SCPAs. Due to layout issues subsequent to limited available voltages, however, there is a practical limitation in the maximum achievable power of low-voltage SCPAs. In this work, a Multi-Port Monolithic Power Combiner (PC) is introduced to overcome this limitation and further enhance total achieved system power. The PC sums the power of a collection of SCPAs to a single output, allowing higher output powers at a high efficiency. Benefits, drawbacks and design of SCPA PCs are discussed in this work. The implemented circuit features the combination of four differential SCPAs through a four-way monolithic PC and is simulated to obtain a maximum drain efficiency of 44% at a peak output power of 29dBm on 1.1V supply voltage. Extensive spectrum analysis offers full evaluation of system performances. After exploring state-of-the-art possibilities offered by an advanced 28nm CMOS technology, this work predicts through rigorous theoretical analysis the expected evolution of SCPA performances with the scaling of CMOS Technologies. The encouraging forecast further emphasizes the importance of SCPA circuits for the future of high-performance Wireless Communications

    CMOS Integrated Power Amplifiers for RF Reconfigurable and Digital Transmitters

    Get PDF
    abstract: This dissertation focuses on three different efficiency enhancement methods that are applicable to handset applications. These proposed designs are based on three critical requirements for handset application: 1) Small form factor, 2) CMOS compatibility and 3) high power handling. The three presented methodologies are listed below: 1) A transformer-based power combiner architecture for out-phasing transmitters 2) A current steering DAC-based average power tracking circuit for on-chip power amplifiers (PA) 3) A CMOS-based driver stage for GaN-based switched-mode power amplifiers applicable to fully digital transmitters This thesis highlights the trends in wireless handsets, the motivates the need for fully-integrated CMOS power amplifier solutions and presents the three novel techniques for reconfigurable and digital CMOS-based PAs. Chapter 3, presents the transformer-based power combiner for out-phasing transmitters. The simulation results reveal that this technique is able to shrink the power combiner area, which is one of the largest parts of the transmitter, by about 50% and as a result, enhances the output power density by 3dB. The average power tracking technique (APT) integrated with an on-chip CMOS-based power amplifier is explained in Chapter 4. This system is able to achieve up to 32dBm saturated output power with a linear power gain of 20dB in a 45nm CMOS SOI process. The maximum efficiency improvement is about ∆η=15% compared to the same PA without APT. Measurement results show that the proposed method is able to amplify an enhanced-EDGE modulated input signal with a data rate of 70.83kb/sec and generate more than 27dBm of average output power with EVM<5%. Although small form factor, high battery lifetime, and high volume integration motivate the need for fully digital CMOS transmitters, the output power generated by this type of transmitter is not high enough to satisfy the communication standards. As a result, compound materials such as GaN or GaAs are usually being used in handset applications to increase the output power. Chapter 5 focuses on the analysis and design of two CMOS based driver architectures (cascode and house of cards) for driving a GaN power amplifier. The presented results show that the drivers are able to generate ∆Vout=5V, which is required by the compound transistor, and operate up to 2GHz. Since the CMOS driver is expected to drive an off-chip capacitive load, the interface components, such as bond wires, and decoupling and pad capacitors, play a critical role in the output transient response. Therefore, extensive analysis and simulation results have been done on the interface circuits to investigate their effects on RF transmitter performance. The presented results show that the maximum operating frequency when the driver is connected to a 4pF capacitive load is about 2GHz, which is perfectly matched with the reported values in prior literature.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Solutions pour l'auto-adaptation des systĂšmes sans fil

    Get PDF
    The current demand on ubiquitous connectivity imposes stringent requirements on the fabrication of Radio-Frequency (RF) circuits. Designs are consequently transferred to the most advanced CMOS technologies that were initially introduced to improve digital performance. In addition, as technology scales down, RF circuits are more and more susceptible to a lot of variations during their lifetime, as manufacturing process variability, temperature, environmental conditions, aging
 As a result, the usual worst-case circuit design is leading to sub-optimal conditions, in terms of power and/or performance most of the time for the circuit. In order to counteract these variations, increasing the performances and also reduce power consumption, adaptation strategies must be put in place.More importantly, the fabrication process introduces more and more performance variability, which can have a dramatic impact on the fabrication yield. That is why RF designs are not easily fabricated in the most advanced CMOS technologies, as 32nm or 22nm nodes for instance. In this context, the performances of RF circuits need to be calibrated after fabrication so as to take these variations into account and recover yield loss.This thesis work is presenting on a post-fabrication calibration technique for RF circuits. This technique is performed during production testing with minimum extra cost, which is critical since the cost of test can be comparable to the cost of fabrication concerning RF circuits and cannot be further raised. Calibration is enabled by equipping the circuit with tuning knobs and sensors. Optimal tuning knob identification is achieved in one-shot based on a single test step that involves measuring the sensor outputs once. For this purpose, we rely on variation-aware sensors which provide measurements that remain invariant under tuning knob changes. As an auxiliary benefit, the variation-aware sensors are non-intrusive and totally transparent to the circuit.Our proposed methodology has first been demonstrated with simulation data with an RF power amplifier as a case study. Afterwards, a silicon demonstrator has then been fabricated in a 65nm technology in order to fully demonstrate the methodology. The fabricated dataset of circuits is extracted from typical and corner wafers. This feature is very important since corner circuits are the worst design cases and therefore the most difficult to calibrate. In our case, corner circuits represent more than the two third of the overall dataset and the calibration can still be proven. In details, fabrication yield based on 3 sigma performance specifications is increased from 21% to 93%. This is a major performance of the technique, knowing that worst case circuits are very rare in industrial fabrication.La demande courante de connectivitĂ© instantanĂ©e impose un cahier des charges trĂšs strict sur la fabrication des circuits Radio-FrĂ©quences (RF). Les circuits doivent donc ĂȘtre transfĂ©rĂ©es vers les technologies les plus avancĂ©es, initialement introduites pour augmenter les performances des circuits purement numĂ©riques. De plus, les circuits RF sont soumis Ă  de plus en plus de variations et cette sensibilitĂ© s’accroĂźt avec l’avancĂ©es des technologies. Ces variations sont par exemple les variations du procĂ©dĂ© de fabrication, la tempĂ©rature, l’environnement, le vieillissement
 Par consĂ©quent, la mĂ©thode classique de conception de circuits “pire-cas” conduit Ă  une utilisation non-optimale du circuit dans la vaste majoritĂ© des conditions, en termes de performances et/ou de consommation. Ces variations doivent donc ĂȘtre compensĂ©es, en utilisant des techniques d’adaptation.De maniĂšre plus importante encore, le procĂ©dĂ© de fabrication des circuits introduit de plus en plus de variabilitĂ© dans les performances des circuits, ce qui a un impact important sur le rendement de fabrication des circuits. Pour cette raison, les circuits RF sont difficilement fabriquĂ©s dans les technologies CMOS les plus avancĂ©es comme les nƓuds 32nm ou 22nm. Dans ce contexte, les performances des circuits RF doivent ĂȘtres calibrĂ©es aprĂšs fabrication pour prendre en compte ces variations et retrouver un haut rendement de fabrication.Ce travail de these prĂ©sente une mĂ©thode de calibration post-fabrication pour les circuits RF. Cette mĂ©thodologie est appliquĂ©e pendant le test de production en ajoutant un minimum de coĂ»t, ce qui est un point essentiel car le coĂ»t du test est aujourd’hui dĂ©jĂ  comparable au coĂ»t de fabrication d’un circuit RF et ne peut ĂȘtre augmentĂ© d’avantage. Par ailleurs, la puissance consommĂ©e est aussi prise en compte pour que l’impact de la calibration sur la consommation soit minimisĂ©. La calibration est rendue possible en Ă©quipant le circuit avec des nƓuds de rĂ©glages et des capteurs. L’identification de la valeur de rĂ©glage optimale du circuit est obtenue en un seul coup, en testant les performances RF une seule et unique fois. Cela est possible grĂące Ă  l’utilisation de capteurs de variations du procĂ©dĂ© de fabrication qui sont invariants par rapport aux changements des nƓuds de rĂ©glage. Un autre benefice de l’utilisation de ces capteurs de variation sont non-intrusifs et donc totalement transparents pour le circuit sous test. La technique de calibration a Ă©tĂ© dĂ©montrĂ©e sur un amplificateur de puissance RF utilisĂ© comme cas d’étude. Une premiĂšre preuve de concept est dĂ©veloppĂ©e en utilisant des rĂ©sultats de simulation.Un dĂ©monstrateur en silicium a ensuite Ă©tĂ© fabriquĂ© en technologie 65nm pour entiĂšrement dĂ©montrer le concept de calibration. L’ensemble des puces fabriquĂ©es a Ă©tĂ© extrait de trois types de wafer diffĂ©rents, avec des transistors aux performances lentes, typiques et rapides. Cette caractĂ©ristique est trĂšs importante car elle nous permet de considĂ©rer des cas de procĂ©dĂ© de fabrication extrĂȘmes qui sont les plus difficiles Ă  calibrer. Dans notre cas, ces circuits reprĂ©sentent plus des deux tiers des puces Ă  disposition et nous pouvons quand mĂȘme prouver notre concept de calibration. Dans le dĂ©tails, le rendement de fabrication passe de 21% avant calibration Ă  plus de 93% aprĂšs avoir appliquĂ© notre mĂ©thodologie. Cela constitue une performance majeure de notre mĂ©thodologie car les circuits extrĂȘmes sont trĂšs rares dans une fabrication industrielle

    Digital Radio Encoding and Power Amplifier Design for Multimode and Multiband Wireless Communications

    Get PDF
    The evolution of wireless technology has necessitated the support of multiple communication standards by mobile devices. At present, multiple chipsets/radios operating at predefined sets of modulation schemes, frequency bands, bandwidths and output power levels are used to achieve this objective. This leads to higher component counts, increased cost and limits the capacity to cope with future communication standards. In order to tackle different wireless standards using a single chipset, digital circuits have been increasingly deployed in radios and demonstrated re-configurability in different modulation schemes (multimode) and frequency bands (multiband). Despite efforts and progress made in digitizing the entire radio, the power amplifier (PA) is still designed using an conventional approach and has become the bottleneck in digital transmitters, in terms of low average power efficiency, poor compatibility with modern CMOS technology and limited re-configurability. This research addresses these issues from two aspects. The first half of the thesis investigates signal encoding issues between the modulator and PA. We propose, analyze and evaluate a new hybrid amplitude/time signal encoding scheme that significantly improves the coding efficiency and dynamic range of a digitally modulated power amplifier (DMPA) without significantly increasing design complexity. The proposed hybrid amplitude/time encoding scheme combines both the amplitude domain and the time domain to optimally encode information. Experimental results show that hybrid amplitude/time encoding results in a 35% increase in the average coding efficiency with respect to conventional time encoding, and is only 6.7% lower than peak efficiency when applied to a Wireless Local Area Network (WLAN) signal with a peak to average power ratio equal to 9.9 dB. A new DMPA architecture, based on the proposed hybrid encoding, is also proposed. The second half of this thesis presents the design, analysis and implementation of a CMOS PA that is amenable to the proposed hybrid encoding scheme. A multi-way current mode class-D PA architecture has been proposed and realized in 130 nm CMOS technology. The designed PA has satisfied the objectives of wide bandwidth (1.5 GHz - 2.7 GHz at 1 dB output power), and high efficiency (PAE 63%) in addition to demonstrating linear responses using the proposed digital encoding. A complete digital transmitter combining the encoder and the multi-way PA was also investigated. The overall efficiency is 27% modulating 7.3 dB peak to average power ratio QAM signals

    Integrated measurement techniques for RF-power amplifiers

    Get PDF

    Wireless wire - ultra-low-power and high-data-rate wireless communication systems

    Get PDF
    With the rapid development of communication technologies, wireless personal-area communication systems gain momentum and become increasingly important. When the market gets gradually saturated and the technology becomes much more mature, new demands on higher throughput push the wireless communication further into the high-frequency and high-data-rate direction. For example, in the IEEE 802.15.3c standard, a 60-GHz physical layer is specified, which occupies the unlicensed 57 to 64 GHz band and supports gigabit links for applications such as wireless downloading and data streaming. Along with the progress, however, both wireless protocols and physical systems and devices start to become very complex. Due to the limited cut-off frequency of the technology and high parasitic and noise levels at high frequency bands, the power consumption of these systems, especially of the RF front-ends, increases significantly. The reason behind this is that RF performance does not scale with technology at the same rate as digital baseband circuits. Based on the challenges encountered, the wireless-wire system is proposed for the millimeter wave high-data-rate communication. In this system, beamsteering directional communication front-ends are used, which confine the RF power within a narrow beam and increase the level of the equivalent isotropic radiation power by a factor equal to the number of antenna elements. Since extra gain is obtained from the antenna beamsteering, less front-end gain is required, which will reduce the power consumption accordingly. Besides, the narrow beam also reduces the interference level to other nodes. In order to minimize the system average power consumption, an ultra-low power asynchronous duty-cycled wake-up receiver is added to listen to the channel and control the communication modes. The main receiver is switched on by the wake-up receiver only when the communication is identified while in other cases it will always be in sleep mode with virtually no power consumed. Before transmitting the payload, the event-triggered transmitter will send a wake-up beacon to the wake-up receiver. As long as the wake-up beacon is longer than one cycle of the wake-up receiver, it can be captured and identified. Furthermore, by adopting a frequency-sweeping injection locking oscillator, the wake-up receiver is able to achieve good sensitivity, low latency and wide bandwidth simultaneously. In this way, high-data-rate communication can be achieved with ultra-low average power consumption. System power optimization is achieved by optimizing the antenna number, data rate, modulation scheme, transceiver architecture, and transceiver circuitries with regards to particular application scenarios. Cross-layer power optimization is performed as well. In order to verify the most critical elements of this new approach, a W-band injection-locked oscillator and the wake-up receiver have been designed and implemented in standard TSMC 65-nm CMOS technology. It can be seen from the measurement results that the wake-up receiver is able to achieve about -60 dBm sensitivity, 10 mW peak power consumption and 8.5 ”s worst-case latency simultaneously. When applying a duty-cycling scheme, the average power of the wake-up receiver becomes lower than 10 ”W if the event frequency is 1000 times/day, which matches battery-based or energy harvesting-based wireless applications. A 4-path phased-array main receiver is simulated working with 1 Gbps data rate and on-off-keying modulation. The average power consumption is 10 ”W with 10 Gb communication data per day
    corecore