43,559 research outputs found

    A generalized entropy-based two-phase threshold algorithm for noisy medical image edge detection

    Full text link
    [EN] Edge detection in medical imaging is a significant task for object recognition of human organs and is considered a pre-processing step in medical image segmentation and reconstruction. This article proposes an efficient approach based on generalized Hill entropy to find a good solution for detecting edges under noisy conditions in medical images. The proposed algorithm uses a two-phase thresholding: firstly, a global threshold calculated by means of generalized Hill entropy is used to separate the image into object and background. Afterwards, a local threshold value is determined for each part of the image. The final edge map image is a combination of these two separate images based on the three calculated thresholds. The performance of the proposed algorithm is compared to Canny and Tsallis entropy using sets of medical images corrupted by various types of noise. We used Pratt's Figure Of Merit (PFOM) as a quantitative measure for an objective comparison. Experimental results indicated that the proposed algorithm displayed superior noise resilience and better edge detection than Canny and Tsallis entropy methods for the four different types of noise analyzed, and thus it can be considered as a very interesting edge detection algorithm on noisy medical images. (c) 2017 Sharif University of Technology. All rights reserved.This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and by FEDER funds under Grant BFU2015-64380-C2-2-R.Elaraby, A.; Moratal, D. (2017). A generalized entropy-based two-phase threshold algorithm for noisy medical image edge detection. Scientia Iranica. 24(6):3247-3256. https://doi.org/10.24200/sci.2017.43593247325624

    Self-Configuring and Evolving Fuzzy Image Thresholding

    Full text link
    Every segmentation algorithm has parameters that need to be adjusted in order to achieve good results. Evolving fuzzy systems for adjustment of segmentation parameters have been proposed recently (Evolving fuzzy image segmentation -- EFIS [1]. However, similar to any other algorithm, EFIS too suffers from a few limitations when used in practice. As a major drawback, EFIS depends on detection of the object of interest for feature calculation, a task that is highly application-dependent. In this paper, a new version of EFIS is proposed to overcome these limitations. The new EFIS, called self-configuring EFIS (SC-EFIS), uses available training data to auto-configure the parameters that are fixed in EFIS. As well, the proposed SC-EFIS relies on a feature selection process that does not require the detection of a region of interest (ROI).Comment: To appear in proceedings of The 14th International Conference on Machine Learning and Applications (IEEE ICMLA 2015), Miami, Florida, USA, 201

    Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow

    Get PDF
    This paper considers the noisy sparse phase retrieval problem: recovering a sparse signal x∈Rpx \in \mathbb{R}^p from noisy quadratic measurements yj=(aj′x)2+ϵjy_j = (a_j' x )^2 + \epsilon_j, j=1,…,mj=1, \ldots, m, with independent sub-exponential noise ϵj\epsilon_j. The goals are to understand the effect of the sparsity of xx on the estimation precision and to construct a computationally feasible estimator to achieve the optimal rates. Inspired by the Wirtinger Flow [12] proposed for noiseless and non-sparse phase retrieval, a novel thresholded gradient descent algorithm is proposed and it is shown to adaptively achieve the minimax optimal rates of convergence over a wide range of sparsity levels when the aja_j's are independent standard Gaussian random vectors, provided that the sample size is sufficiently large compared to the sparsity of xx.Comment: 28 pages, 4 figure

    Linear Convergence of Adaptively Iterative Thresholding Algorithms for Compressed Sensing

    Full text link
    This paper studies the convergence of the adaptively iterative thresholding (AIT) algorithm for compressed sensing. We first introduce a generalized restricted isometry property (gRIP). Then we prove that the AIT algorithm converges to the original sparse solution at a linear rate under a certain gRIP condition in the noise free case. While in the noisy case, its convergence rate is also linear until attaining a certain error bound. Moreover, as by-products, we also provide some sufficient conditions for the convergence of the AIT algorithm based on the two well-known properties, i.e., the coherence property and the restricted isometry property (RIP), respectively. It should be pointed out that such two properties are special cases of gRIP. The solid improvements on the theoretical results are demonstrated and compared with the known results. Finally, we provide a series of simulations to verify the correctness of the theoretical assertions as well as the effectiveness of the AIT algorithm.Comment: 15 pages, 5 figure
    • …
    corecore