36 research outputs found

    A 250-ps integrated ultra-wideband timed array beamforming receiver in 0.18 um CMOS

    Get PDF
    This paper presents a 4-channel ultra-wideband (UWB) timed array beamforming receiver designed in a standard 0.18-um CMOS technology. The proposed timed array receiver achieves a maximum delay of 250 ps at the maximum beam steering angle of +/-42o with 10.5o (8 steps) steering resolution and 2-cm antenna spacing. Each receiver channel provides gains ranging from 3.6 to -35 dB and less than 8% delay variation for all delay settings over a 3.1-10.6-GHz frequency range, while consuming a maximum of 58 mW power from a 1.8-V supply. The average -1-dB compression point P1dB is -9.9 dBm. The proposed architecture is modeled and simulated by using Virtuoso Cadence.This work has been partially supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades (MICINN)- ´ Agencia Estatal de Investigacion (AEI) and the European ´ Regional Development Funds (FEDER), by project PGC2018- 098946-B-I00.Peer ReviewedPostprint (author's final draft

    Timed array antenna system : application to wideband and ultra-wideband beamforming receivers

    Get PDF
    Antenna array systems have a broad range of applications in radio frequency (RF) and ultra-wideband (UWB) communications to receive/transmit electromagnetic waves from/to the sky. They can enhance the amplitude of the input signals, steer beams electronically, and reject interferences thanks to beamforming technique. In an antenna array beamforming system, delay cells with the tunable capability of delay amount compensate the relative delay of signals received by antennas. In fact, each antenna almost acts individually depending upon time delaying effects on the input signals. As a result, the delay cells are the basic elements of the beamforming systems. For this purpose, novel active true time delay (TTD) cells suitable for RF antenna arrays have been presented in this thesis. These active delay cells are based on 1st- and 2nd-order all-pass filters (APFs) and achieve quite a flat gain and delay within up to 10-GHz frequency range. Various techniques such as phase linearity and delay tunability have been accomplished to improve the design and performance. The 1st-order APF has been designed for a frequency range of 5 GHz, showing desirable frequency responses and linearity which is comparable with the state-of-the-art. This 1st-order APF is able to convert into a 2nd-order APF via adding a grounded capacitor. A compact 2nd-order APF using an active inductor has been also designed and simulated for frequencies up to 10 GHz. The active inductor has been utilized to tune the amount of delay and to reduce the on-chip size of the filter. In order to validate the performance of the delay cells, two UWB four-channel timed array beamforming receivers realized by the active TTD cells have been proposed. Each antenna channel exploits digitally controllable gain and delay on the input signal and demonstrates desirable gain and delay resolutions. The beamforming receivers have been designed for different UWB applications depending on their operating frequency ranges (that is, 3-5 and 3.1-10.6 GHz), and thus they have different system requirements and specifications. All the circuits and topologies presented in this dissertation have been designed in standard 180-nm CMOS technologies, featuring a unity gain frequency ( ft) up to 60 GHz.Els sistemes matricials d’antenes tenen una àmplia gamma d’aplicacions en radiofreqüència (RF) i comunicacions de banda ultraampla (UWB) per rebre i transmetre ones electromagnètics. Poden millorar l’amplitud dels senyals d’entrada rebuts, dirigir els feixos electrònicament i rebutjar les interferències gràcies a la tècnica de formació de feixos (beamforming). En un sistema beamforming de matriu d’antenes, les cèl·lules de retard amb capacitat ajustable del retard, compensen aquest retard relatiu dels senyals rebuts per les diferents antenes. De fet, cada antena gairebé actua individualment depenent dels efectes de retard de temps sobre el senyals d’entrada. Com a resultat, les cel·les de retard són els elements bàsics en el disseny dels actuals sistemes beamforming. Amb aquest propòsit, en aquesta tesi es presenten noves cèl·lules actives de retard en temps real (TTD, true time delay) adequades per a matrius d’antenes de RF. Aquestes cèl·lules de retard actives es basen en cèl·lules de primer i segon ordre passa-tot (APF), i aconsegueixen un guany i un retard força plans, en el rang de freqüència de fins a 10 GHz. Diverses tècniques com ara la linealitat de fase i la sintonització del retard s’han aconseguit per millorar el disseny i el rendiment. La cèl·lula APF de primer ordre s’ha dissenyat per a un rang de freqüències de fins a 5 GHz, mostrant unes respostes freqüencials i linealitat que són comparables amb l’estat de l’art actual. Aquestes cèl·lules APF de primer ordre es poden convertir en un APF de segon ordre afegint un condensador més connectat a massa. També s’ha dissenyat un APF compacte de segon ordre que utilitza una emulació d’inductor actiu per a freqüències de treball de fins a 10 GHz. S’ha utilitzat l'inductor actiu per ajustar la quantitat de retard introduït i reduir les dimensions del filtre al xip. Per validar les prestacions de les cel·les de retard propostes, s’han proposat dos receptors beamforming basats en matrius d’antenes de 4 canals, realitzats por cèl·lules TTD actives. Cada canal d’antena aprofita el guany i el retard controlables digitalment aplicats al senyal d’entrada, i demostra resolucions de guany i retard desitjables. Els receptors beamforming s’han dissenyat per a diferents aplicacions UWB segons els seus rangs de freqüències de funcionament (en aquest cas, 3-5 i 3,1-10,6 GHz) i, per tant, tenen diferents requisits i especificacions de disseny del sistema. Tots els circuits i topologies presentats en aquesta tesi s’han dissenyat en tecnologies CMOS estàndards de 180 nm, amb una freqüència de guany unitari (ft) de fins a 60 GHz.Postprint (published version

    Circuit Design Techniques For Wideband Phased Arrays

    Get PDF
    University of Minnesota Ph.D. dissertation.June 2015. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xii, 143 pages.This dissertation focuses on beam steering in wideband phased arrays and phase noise modeling in injection locked oscillators. Two different solutions, one in frequency and one in time, have been proposed to minimize beam squinting in phased arrays. Additionally, a differential current reuse frequency doubler for area and power savings has been proposed. Silicon measurement results are provided for the frequency domain solution (IBM 65nm RF CMOS), injection locked oscillator model verification (IBM 130nm RF-CMOS) and frequency doubler (IBM 65nm RF CMOS), while post extraction simulation results are provided for the time domain phased array solution (the chip is currently under fabrication, TSMC 65nm RF CMOS). In the frequency domain solution, a 4-point passive analog FFT based frequency tunable filter is used to channelize an incoming wideband signal into multiple narrowband signals, which are then processed through independent phase shifters. A two channel prototype has been developed at 8GHz RF frequency. Three discrete phase shifts (0 & +/- 90 degrees) are implemented through differential I-Q swapping with appropriate polarity. A minimum null-depth of 19dB while a maximum null-depth of 27dB is measured. In the time domain solution, a discrete time approach is undertaken with signals getting sampled in order of their arrival times. A two-channel prototype for a 2GHz instantaneous RF bandwidth (7GHz-9GHz) has been designed. A QVCO generates quadrature LO signals at 8GHz which are phase shifted through a 5-bit (2 extra bits from differential I-Q swapping with appropriate polarity) cartesian combiner. Baseband sampling clocks are generated from phase shifted LOs through a CMOS divide by 4 with independent resets. The design achieves an average time delay of 4.53ps with 31.5mW of power consumption (per channel, buffers excluded). An injection locked oscillator has been analyzed in s-domain using Paciorek's time domain transient equations. The simplified analysis leads to a phase noise model identical to that of a type-I PLL. The model is equally applicable to injection locked dividers and multipliers and has been extended to cover all injection locking scenarios. The model has been verified against a discrete 57MHz Colpitt's ILO, a 6.5GHz ILFD and a 24GHz ILFM with excellent matching between the model and measurements. Additionally, a differential current reuse frequency doubler, for frequency outputs between 7GHz to 14GHz, design has been developed to reduce passive area and dc power dissipation. A 3-bit capacitive tuning along with a tail current source is used to better conversion efficiency. The doubler shows FOMT_{T} values between 191dBc/Hz to 209dBc/Hz when driven by a 0.7GHz to 5.8GHz wide tuning VCO with a phase noise that ranges from -114dBc/Hz to -112dBc/Hz over the same bandwidth

    High Frequency Devices and Circuit Modules for Biochemical Microsystems

    Get PDF
    This dissertation investigates high frequency devices and circuit modules for biochemical microsystems. These modules are designed towards replacing external bulky laboratory instruments and integrating with biochemical microsystems to generate and analyze signals in frequency and time domain. The first is a charge pump circuit with modified triple well diodes, which is used as an on-chip power supply. The second is an on-chip pulse generation circuit to generate high voltage short pulses. It includes a pulse-forming-line (PFL) based pulse generation circuit, a Marx generator and a Blumlein generator. The third is a six-port circuit based on four quadrature hybrids with 2.0~6.0 GHz operating frequency tuning range for analyzing signals in frequency domain on-chip. The fourth is a high-speed sample-and-hold circuit (SHC) with a 13.3 Gs/s sampling rate and ~11.5 GHz input bandwidth for analyzing signals in time domain on-chip. The fifth is a novel electron spin resonance (ESR) spectroscopy with high-sensitivity and wide frequency tuning range

    The Design of Low Power Ultra-Wideband Transceiver

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    SiGe/CMOS Millimeter-Wave Integrated Circuits and Wafer-Scale Packaging for Phased Array Systems.

    Full text link
    Phased array systems have been used to achieve electronic beam control and fast beam scanning. In the RF-phase shifting architecture, T/R modules are required for each antenna element, and have been traditionally developed using GaAs or InP technology. This thesis demonstrates that Ka-band (35 GHz) T/R modules can also be developed using the SiGe BiCMOS technology. The designed circuit blocks include a low noise amplifier, a 4-bit phase shifter, a variable gain amplifier/attenuator, and SPDT switches. The Ka-band phase shifters are designed based on CMOS switch and miniature low-pass networks for a single-ended and differential applications, and result in 3-degree rms phase error at 35 GHz. The SiGe LNA results in a peak gain of 24 dB and a noise figure of 2.9-3.1 dB with 11 mW power consumption. The CMOS variablestep attenuator has 12-dB attenuation range (1 dB step) with very low loss and phase imbalance at 10-50 GHz. A variable gain LNA is also demonstrated at 30-40 GHz for the differential phased array receiver, and has 20-dB gain and <1-degree rms phase imbalance between the 8 different gain states and 10 dB gain control. All of these circuits show state-of-the-art performance, and the phase shifter, distributed attenuator and VGA are also first-time demonstrations at Ka-band frequencies. These circuit blocks were used in a miniature SiGe/CMOS Ka-band T/R module with a dimension of 0.93x1.33mm2, and a measured performance of 19 dB receive gain, 4-5 dB NF, 9 dB transmit gain and +5.5 dBm output P1dB. The T/R module also has 4-bit phase control and 10 dB gain control in both the transmit and receive modes. To our knowledge, this is the first demonstration of a Ka-band SiGe/CMOS T/R module to-date. Finally, a DC-110 GHz Si wafer-scale packaging technique has been developed using thermo-compression bonding and is suitable for Ka-band and even W-band T/R modules. The package transition has an insertion loss of 0.1-0.26 dB at 30-110 GHz, and the package resonances and leakage were drastically reduced by grounding the sealing ring. This is the first demonstration of a wideband resonance-free (DC-110 GHz) package using silicon technology.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58380/1/bmin_1.pd
    corecore