410 research outputs found

    A Bidirectional Analog VLSI Cochlear Model

    Get PDF
    A novel circuit is presented for implementing a bidirectional passive cochlear model in analog VLSI. The circuit includes a subcircuit for modelling the fluid in the cochlear duct, and a subcircuit for modelling the passive basilar membrane. The circuit is compared to the classical 1-D transmission line cochlear model and found to be equivalent. The approach leads to an unexpected fa.ult tolerance in the form of insensitivity to transconductance amplifier offset voltages. A 545-stage cochlea has been fabricated and demonstrates the expected wave propagation behaviour

    Design of an Analog VLSI Cochlea

    Get PDF
    The cochlea is an organ which extracts frequency information from the input sound wave. It also produces nerve signals, which are further analysed by the brain and ultimately lead to perception of the sound. An existing model of the cochlea by Fragni`ere is first analysed by simulation. This passive model is found to have the properties that the living cochlea does in terms of the frequency response. An analog VLSI circuit implementation of this cochlear model in CMOS weak inversion is proposed, using log-domain filters in current domain. It is fabricated on a chip and a measurement of a basilar membrane section is performed. The measurement shows a reasonable agreement to the model. However, the circuit is found to have a problem related to transistor mismatch, causing different behaviour in identical circuit blocks. An active cochlear model is proposed to overcome this problem. The model incorporates the effect of the outer hair cells in the living cochlea, which controls the quality factor of the basilar membrane filters. The outer hair cells are incorporated as an extra voltage source in series with the basilar membrane resonator. Its value saturates as the input signal becomes larger, making the behaviour rather closer to that of a passive model. The simulation results show this nonlinear phenomenon, which is also seen in the living cochlea. The contribution of this thesis is summarised as follows: a) the first CMOS weak inversion current domain basilar membrane resonator is designed and fabricated, and b) the first active two-dimensional cochlear model for analog VLSI implementation is developed

    An analog electronic cochlea

    Get PDF
    An analog electronic cochlea has been built in CMOS VLSI technology using micropower techniques. The key point of the model and circuit is that a cascade of simple, nearly linear, second-order filter stages with controllable Q parameters suffices to capture the physics of the fluid-dynamic traveling-wave system in the cochlea, including the effects of adaptation and active gain involving the outer hair cells. Measurements on the test chip suggest that the circuit matches both the theory and observations from real cochleas

    Analogue CMOS Cochlea Systems: A Historic Retrospective

    Get PDF

    An Analog Electronic Cochlea

    Get PDF
    An engineered system that hears, such as a speech recognizer, can be designed by modeling the cochlea, or inner ear, and higher levels of the auditory nervous system. To be useful in such a system, a model of the cochlea should incorporate a variety of known effects, such as an asymmetric low-pass/bandpass response at each output channel, a short ringing time, and active adaptation to a wide range of input signal levels. An analog electronic cochlea has been built in CMOS VLSI technology using micropower techniques to achieve this goal of usefulness via realism. The key point of the model and circuit is that a cascade of simple, nearly linear, second-order filter stages with controllable Q parameters suffices to capture the physics of the fluid-dynamic traveling-wave system in the cochlea, including the effects of adaptation and active gain involving the outer hair cells. Measurements on the test chip suggest that the circuit matches both the theory and observations from real cochleas

    Design of a silicon cochlea system with biologically faithful response

    Get PDF
    This paper presents the design and simulation results of a silicon cochlea system that has closely similar behavior as the real cochlea. A cochlea filter-bank based on the improved three-stage filter cascade structure is used to model the frequency decomposition function of the basilar membrane; a filter tuning block is designed to model the adaptive response of the cochlea; besides, an asynchronous event-triggered spike codec is employed as the system interface with bank-end spiking neural networks. As shown in the simulation results, the system has biologically faithful frequency response, impulse response, and active adaptation behavior; also the system outputs multiple band-pass channels of spikes from which the original sound input can be recovered. The proposed silicon cochlea is feasible for analog VLSI implementation so that it not only emulates the way that sounds are preprocessed in human ears but also is able match the compact physical size of a real cochlea

    An analog electronic cochlea

    Full text link

    Neuromorphic analogue VLSI

    Get PDF
    Neuromorphic systems emulate the organization and function of nervous systems. They are usually composed of analogue electronic circuits that are fabricated in the complementary metal-oxide-semiconductor (CMOS) medium using very large-scale integration (VLSI) technology. However, these neuromorphic systems are not another kind of digital computer in which abstract neural networks are simulated symbolically in terms of their mathematical behavior. Instead, they directly embody, in the physics of their CMOS circuits, analogues of the physical processes that underlie the computations of neural systems. The significance of neuromorphic systems is that they offer a method of exploring neural computation in a medium whose physical behavior is analogous to that of biological nervous systems and that operates in real time irrespective of size. The implications of this approach are both scientific and practical. The study of neuromorphic systems provides a bridge between levels of understanding. For example, it provides a link between the physical processes of neurons and their computational significance. In addition, the synthesis of neuromorphic systems transposes our knowledge of neuroscience into practical devices that can interact directly with the real world in the same way that biological nervous systems do

    Toward a Neuromorphic Microphone

    Get PDF
    Neuromorphic systems are used in variety of circumstances: as parts of sensory systems, for modeling parts of neural systems and for analog signal processing. In the sensory processing domain, neuromorphic systems can be considered in three parts: pre-transduction processing, transduction itself, and post-transduction processing. Neuromorphic systems include transducers for light, odors, and touch but so far neuromorphic applications in the sound domain have used standard microphones for transduction. We discuss why this is the case and describe what research has been done on neuromorphic approaches to transduction. We make a case for a change of direction toward systems where sound transduction itself has a neuromorphic component
    • …
    corecore