3,692 research outputs found

    Towards 3-Dimensional Rewriting Theory

    Full text link
    String rewriting systems have proved very useful to study monoids. In good cases, they give finite presentations of monoids, allowing computations on those and their manipulation by a computer. Even better, when the presentation is confluent and terminating, they provide one with a notion of canonical representative of the elements of the presented monoid. Polygraphs are a higher-dimensional generalization of this notion of presentation, from the setting of monoids to the much more general setting of n-categories. One of the main purposes of this article is to give a progressive introduction to the notion of higher-dimensional rewriting system provided by polygraphs, and describe its links with classical rewriting theory, string and term rewriting systems in particular. After introducing the general setting, we will be interested in proving local confluence for polygraphs presenting 2-categories and introduce a framework in which a finite 3-dimensional rewriting system admits a finite number of critical pairs

    Deriving Bisimulation Congruences: A 2-Categorical Approach

    Get PDF
    We introduce G-relative-pushouts (GRPO) which are a 2-categorical generalisation of relative-pushouts (RPO). They are suitable for deriving labelled transition systems (LTS) for process calculi where terms are viewed modulo structural congruence. We develop their basic properties and show that bisimulation on the LTS derived via GRPOs is a congruence, provided that sufficiently many GRPOs exist. The theory is applied to a simple subset of CCS and the resulting LTS is compared to one derived using a procedure proposed by Sewell

    Open Graphs and Monoidal Theories

    Full text link
    String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. The distinguishing feature of these diagrams is that edges need not be connected to vertices at both ends, and these unconnected ends can be interpreted as the inputs and outputs of a diagram. In this paper, we give a concrete construction for string diagrams using a special kind of typed graph called an open-graph. While the category of open-graphs is not itself adhesive, we introduce the notion of a selective adhesive functor, and show that such a functor embeds the category of open-graphs into the ambient adhesive category of typed graphs. Using this functor, the category of open-graphs inherits "enough adhesivity" from the category of typed graphs to perform double-pushout (DPO) graph rewriting. A salient feature of our theory is that it ensures rewrite systems are "type-safe" in the sense that rewriting respects the inputs and outputs. This formalism lets us safely encode the interesting structure of a computational model, such as evaluation dynamics, with succinct, explicit rewrite rules, while the graphical representation absorbs many of the tedious details. Although topological formalisms exist for string diagrams, our construction is discreet, finitary, and enjoys decidable algorithms for composition and rewriting. We also show how open-graphs can be parametrised by graphical signatures, similar to the monoidal signatures of Joyal and Street, which define types for vertices in the diagrammatic language and constraints on how they can be connected. Using typed open-graphs, we can construct free symmetric monoidal categories, PROPs, and more general monoidal theories. Thus open-graphs give us a handle for mechanised reasoning in monoidal categories.Comment: 31 pages, currently technical report, submitted to MSCS, waiting review

    Deriving Bisimulation Congruences using 2-Categories

    No full text
    We introduce G-relative-pushouts (GRPO) which are a 2-categorical generalisation of relative-pushouts (RPO). They are suitable for deriving labelled transition systems (LTS) for process calculi where terms are viewed modulo structural congruence. We develop their basic properties and show that bisimulation on the LTS derived via GRPOs is a congruence, provided that sufficiently many GRPOs exist. The theory is applied to a simple subset of CCS and the resulting LTS is compared to one derived using a procedure proposed by Sewell

    Coherent Presentations of Monoidal Categories

    Get PDF
    Presentations of categories are a well-known algebraic tool to provide descriptions of categories by means of generators, for objects and morphisms, and relations on morphisms. We generalize here this notion, in order to consider situations where the objects are considered modulo an equivalence relation, which is described by equational generators. When those form a convergent (abstract) rewriting system on objects, there are three very natural constructions that can be used to define the category which is described by the presentation: one consists in turning equational generators into identities (i.e. considering a quotient category), one consists in formally adding inverses to equational generators (i.e. localizing the category), and one consists in restricting to objects which are normal forms. We show that, under suitable coherence conditions on the presentation, the three constructions coincide, thus generalizing celebrated results on presentations of groups, and we extend those conditions to presentations of monoidal categories
    corecore