356 research outputs found

    Polynomial-time sortable stacks of burnt pancakes

    Get PDF
    Pancake flipping, a famous open problem in computer science, can be formalised as the problem of sorting a permutation of positive integers using as few prefix reversals as possible. In that context, a prefix reversal of length k reverses the order of the first k elements of the permutation. The burnt variant of pancake flipping involves permutations of signed integers, and reversals in that case not only reverse the order of elements but also invert their signs. Although three decades have now passed since the first works on these problems, neither their computational complexity nor the maximal number of prefix reversals needed to sort a permutation is yet known. In this work, we prove a new lower bound for sorting burnt pancakes, and show that an important class of permutations, known as "simple permutations", can be optimally sorted in polynomial time.Comment: Accepted pending minor revisio

    Pancake Flipping is Hard

    Get PDF
    Pancake Flipping is the problem of sorting a stack of pancakes of different sizes (that is, a permutation), when the only allowed operation is to insert a spatula anywhere in the stack and to flip the pancakes above it (that is, to perform a prefix reversal). In the burnt variant, one side of each pancake is marked as burnt, and it is required to finish with all pancakes having the burnt side down. Computing the optimal scenario for any stack of pancakes and determining the worst-case stack for any stack size have been challenges over more than three decades. Beyond being an intriguing combinatorial problem in itself, it also yields applications, e.g. in parallel computing and computational biology. In this paper, we show that the Pancake Flipping problem, in its original (unburnt) variant, is NP-hard, thus answering the long-standing question of its computational complexity.Comment: Corrected reference

    Reversal Distances for Strings with Few Blocks or Small Alphabets

    Get PDF
    International audienceWe study the String Reversal Distance problem, an extension of the well-known Sorting by Reversals problem. String Reversal Distance takes two strings S and T as input, and asks for a minimum number of reversals to obtain T from S. We consider four variants: String Reversal Distance, String Prefix Reversal Distance (in which any reversal must include the first letter of the string), and the signed variants of these problems, namely Signed String Reversal Distance and Signed String Prefix Reversal Distance. We study algorithmic properties of these four problems, in connection with two parameters of the input strings: the number of blocks they contain (a block being maximal substring such that all letters in the substring are equal), and the alphabet size Σ. For instance, we show that Signed String Reversal Distance and Signed String Prefix Reversal Distance are NP-hard even if the input strings have only one letter

    Short Proofs for Cut-and-Paste Sorting of Permutations

    Full text link
    We consider the problem of determining the maximum number of moves required to sort a permutation of [n][n] using cut-and-paste operations, in which a segment is cut out and then pasted into the remaining string, possibly reversed. We give short proofs that every permutation of [n][n] can be transformed to the identity in at most \flr{2n/3} such moves and that some permutations require at least \flr{n/2} moves.Comment: 7 pages, 2 figure

    Sorting by Prefix Block-Interchanges

    Get PDF
    We initiate the study of sorting permutations using prefix block-interchanges, which exchange any prefix of a permutation with another non-intersecting interval. The goal is to transform a given permutation into the identity permutation using as few such operations as possible. We give a 2-approximation algorithm for this problem, show how to obtain improved lower and upper bounds on the corresponding distance, and determine the largest possible value for that distance

    Sorting by Block Moves

    Get PDF
    The research in this thesis is focused on the problem of Block Sorting, which has applications in Computational Biology and in Optical Character Recognition (OCR). A block in a permutation is a maximal sequence of consecutive elements that are also consecutive in the identity permutation. BLOCK SORTING is the process of transforming an arbitrary permutation to the identity permutation through a sequence of block moves. Given an arbitrary permutation π and an integer m, the Block Sorting Problem, or the problem of deciding whether the transformation can be accomplished in at most m block moves has been shown to be NP-hard. After being known to be 3-approximable for over a decade, block sorting has been researched extensively and now there are several 2-approximation algorithms for its solution. This work introduces new structures on a permutation, which are called runs and ordered pairs, and are used to develop two new approximation algorithms. Both the new algorithms are 2-approximation algorithms, yielding the approximation ratio equal to the current best. This work also includes an analysis of both the new algorithms showing they are 2-approximation algorithms

    The distribution of cycles in breakpoint graphs of signed permutations

    Get PDF
    Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre, who enumerated unsigned permutations whose breakpoint graph contains kk cycles, to signed permutations, and prove explicit formulas for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also compare these distributions to those of several well-studied distances, emphasising the cases where approximations obtained in this way stand out. Finally, we show how our results can be used to derive simpler proofs of other previously known results
    corecore