3 research outputs found

    Phase shifters with multiple independently controllable bands utilising frequency‐selective variable gain networks

    Get PDF
    A dual‐band vector‐sum phase shifter with independent phase control of the 2.4 and 5 GHz Wi‐Fi bands is presented. The network uses band‐limited variable gain amplification, with a broadband hybrid coupler at the input and an in‐phase recombiner at the output. The circuit is prototyped on RF printed circuit board and exhibits performance characteristics comparable to the state‐of‐the‐art single band vector‐sum phase shifters. The prototype achieved an average gain of 2.16 dB over the 2.4 GHz band, with less than 0.26 dB and 1.32° root‐mean‐square (RMS) gain and phase error across all 2.4 and 5 GHz band tuning states. In the 5 GHz band, an average gain of 0.17 dB is achieved, with less than 0.21 dB and 3.88° RMS gain and phase error. The network's ability to generate bandindependent vector modulation over a 12 dB/90° tuning range is demonstrated as well, achieving less than 0.12 dB and 0.27° RMS gain and phase error in the 2.4 GHz band, and less than 0.27 dB and 2.94° gain and phase error in the 5 GHz band.The South African Radio Astronomy Observatory (SARAO)http://wileyonlinelibrary.com/journal/mia2am2022Electrical, Electronic and Computer Engineerin

    KEY FRONT-END CIRCUITS IN MILLIMETER-WAVE SILICON-BASED WIRELESS TRANSMITTERS FOR PHASED-ARRAY APPLICATIONS

    Get PDF
    Millimeter-wave (mm-Wave) phased arrays have been widely used in numerous wireless systems to perform beam forming and spatial filtering that can enhance the equivalent isotropically radiated power (EIRP) for the transmitter (TX). Regarding the existing phased-array architectures, an mm-Wave transmitter includes several building blocks to perform the desired delivered power and phases for wireless communication. Power amplifier (PA) is the most important building block. It needs to offer several advantages, e.g., high efficiency, broadband operation and high linearity. With the recent escalation of interest in 5G wireless communication technologies, mm-Wave transceivers at the 5G frequency bands (e.g., 28 GHz, 37 GHz, 39 GHz, and 60 GHz) have become an important topic in both academia and industry. Thus, PA design is a critical obstacle due to the challenges associated with implementing wideband, highly efficient and highly linear PAs at mm-Wave frequencies. In this dissertation, we present several PA design innovations to address the aforementioned challenges. Additionally, phase shifter (PS) also plays a key role in a phased-array system, since it governs the beam forming quality and steering capabilities. A high-performance phase shifter should achieve a low insertion loss, a wide phase shifting range, dense phase shift angles, and good input/output matching.Ph.D

    New Architectures for Low Complexity Scalable Phased Arrays

    Full text link
    Inspired by the unique advantages of phased arrays in communication and radar systems, i.e. their capability to increase the channel capacity, signal-to-noise ratio, directivity, and radar resolution, this dissertation presents novel architectures for low-complexity scalable phased arrays to facilitate their widespread use in commercial applications. In phased arrays, phase shifters are one of the key components responsible for adjusting the signal phase across the array elements. In general, phase shifters and their control circuitry play a significant role in determining the complexity and size of conventional phased arrays. To reduce phased arrays’ complexity and size without degrading their performance, two new circuit architectures for scalable phased arrays with a significantly reduced number of phase shifters and control signals are presented. These architectures can be utilized for designing phased arrays in receive as well as transmit mode. The phased arrays designed based on the proposed architectures are intended for applications such as 5G communications and automotive radars for advanced driver assistance systems (ADAS) and autonomous vehicles.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147494/1/noyan_1.pd
    corecore