226 research outputs found

    Materials Analysis Using a THz Imaging System Based on Atomic Vapour

    Get PDF
    This thesis studies the response of the interaction between Rydberg atomic vapour and a THz frequency field. When Caesium atoms at room temperature are excited to a Rydberg state using three infrared lasers and a 0.55 THz field resonant with the 14P3/2 → 13D5/2 transition is applied, the atoms respond by emitting a green optical fluorescence corresponding to the 13D5/2 → 6P3/2 decay. This response is exploited to investigate the absorption coefficient for different polymer materials that transmit well in the THz frequency range using the Beer–Lambert law. We calibrate the system to obtain a measure of THz intensity. As the THz imaging system is highly sensitive to environmental changes, and to show that our results are consistent, we provide a comparison of results between our atomic detection method and a commercial thermal power meter. Additionally, we measure the absorption coefficient of the same materials at a frequency of 1.1 THz, and the results are compared with those measured at 0.55 THz. The THz imaging system is also used to perform some experiments in order to demonstrate its effectiveness in real-world applications. The system provides an interesting image contrast in the case of a sample containing two different polymer materials measured at two THz frequencies. The result is a proof-of-concept that multispectral THz imaging can provide additional information and is motivation to improve our THz imaging system by introducing a dual-species THz imager. We also investigate the polarisation spectroscopy of an excited-state transition of rubidium vapour at room temperature as a step towards a rubidium THz imaging system. The narrow dispersive signal produced by this spectroscopy technique is ideal for laser frequency stabilisation of excited-state transitions

    Infrared: A Key Technology for Security Systems

    Get PDF
    Infrared science and technology has been, since the first applications, mainly dedicated to security and surveillance especially in military field, besides specialized techniques in thermal imaging for medical diagnostic and building structures and recently in energy savings and aerospace context. Till recently the security applications were mainly based on thermal imaging as surveillance and warning military systems. In all these applications the advent of room temperature, more reliable due to the coolers avoidance, low cost, and, overall, completely integrable with Silicon technology FPAs, especially designed and tailored for specific applications, smart sensors, has really been impacted with revolutionary and new ideas and system concepts in all the infrared fields, especially for security applications. Lastly, the advent of reliable Infrared Solid State Laser Sources, operating up to the Long Infrared Wavelength Band and the new emerging techniques in Far Infrared Submillimeter Terahertz Bands, has opened wide and new areas for developing new, advanced security systems. A review of all the items with evidence of the weak and the strong points of each item, especially considering possible future developments, will be reported and discussed

    Structured photonic materials for multi-spectral imaging applications

    Get PDF
    Structured photonic materials are typically composed of periodic subwavelength elements where the unit cell geometries can impact the overall optical characteristics of the bulk material. By using micro and nanofabrication technologies it is possible to engineer the electromagnetic properties of structured photonic materials for a given application and create a variety of optical components such as band pass filters and absorbers. Two structured photonic materials that have gained substantial interest in recent years are plasmonic filters and metamaterials which are well suited for optical and terahertz imaging applications, respectively. In addition to imaging applications within individual wavebands, structured photonic materials, such as plasmonic filters and metamaterials, could be hybridised and combined with suitable sensors to create a multi-spectral imaging system capable of imaging at optical and terahertz wavebands simultaneously. These new hybrid structured photonic materials are known as synthetic multi-spectral materials, and their development will be presented in this work. To design synthetic multi-spectral materials it was necessary to optimise the plasmonic filter and metamaterial components independently. This involved electromagnetic simulation studies using finite-difference time-domain techniques, fabrication of the structured materials and characterisation using suitable techniques for the relevant spectral band. It was also necessary to ensure that all structures used the same materials and similar fabrication processing techniques as a means of simplifying hybridisation of the two structures. Plasmonic filters exhibit extraordinary optical transmission due to coupling of light with surface plasmons at a metal-dielectric interface. A 16 colour plasmonic filter set, consisting of triangular hole arrays etched into an aluminium film, was optimised for imaging applications in the visible and near infrared spectral range. Initial work on the integration of synthetic multi-spectral materials with CMOS image sensors was undertaken by developing fabrication processes to integrate plasmonic colour filters with two different CMOS chips. Preliminary results from the characterisation of the optical filters fabricated on to the chips have been presented. The resonant wavelengths of the plasmonic colour filters were then scaled up to infrared wavelengths where it was necessary to consider the role of spoof surface plasmons on the extraordinary optical transmission phenomenon. This led to the fabrication of 8 short wave infrared plasmonic filters. Metamaterial band pass filters consist of a single metal film etched with a periodic complementary electric ring resonator unit cell structure. Metamaterial absorbers consist of an electric ring resonator, separated by a metallic ground layer by a dielectric spacer. In the course of this work, two metamaterial filters and four metamaterial absorbers were designed. The metamaterial structures exhibit resonant characteristics at terahertz frequencies. Three synthetic multi-spectral materials, each consisting of hybrid plasmonic filter and terahertz metamaterial structures, have been simulated, fabricated and characterised. The first synthetic multi-spectral material combines 16 plasmonic filters with a terahertz metamaterial filter and is capable of filtering 15 optical wavelengths and a single near infrared wavelength, whilst simultaneously filtering a single terahertz frequency. The multi-spectral filter demonstrates that it is possible to engineer the optical passband characteristics of a thin metal film over several decades of wavelength using a single electron beam lithography step. The second synthetic multi-spectral material consists of 16 plasmonic filters hybridised with a terahertz metamaterial absorber and can filter 15 optical wavelengths and a single near infrared wavelength whilst simultaneously absorbing a single terahertz frequency. Plasmonic filters and metamaterial absorbers are promising components for use in the development of new optical and terahertz imaging systems, respectively, and therefore the second synthetic multi-spectral material represents a significant step forward in the development of a visible and terahertz multi-spectral camera. The third synthetic multi-spectral material combines 7 plasmonic filters with a low metal fill factor metamaterial absorber, to increase the measured transmission of the plasmonic filter components. The third synthetic multi-spectral material is capable of filtering three optical wavelengths, a single near infrared wavelength, a single short wave infrared wavelength and two mid infrared wavelengths, whilst simultaneously absorbing a single terahertz frequency. Such a synthetic multi-spectral material could aid in the development of a visible, infrared and terahertz multi-spectral camera

    Non-destructive Detection of Food Adulteration to Guarantee Human Health and Safety

    Get PDF
    The primary objective of this review is to critique the basic concepts of non-destructive detection of food adulteration and fraud which collectively represent a tremendous annual financial loss worldwide and a major cause of human disease. The review covers the principles of the analytical instrumentation used for the non-destructive detection of food adulteration. Examples of practical applications of these methods for the control of food adulteration are provided and a comparative analysis of the advantages and disadvantages of instrumental methods in food technology are critiqued.Целью данного обзора является критическое рассмотрение основных понятий неразрушающего выявления фальсификации и подделки продуктов питания, которые в целом вызывают огромные ежегодные финансовые убытки во всем мире и являются одной из основных причин заболеваний человечества. Материалы и методы. Литература, указанная в данном обзоре, была получена в результате поиска библиографической информации в CAB abstracts, AGRICOLA, SciFinder Scholar, Modern Language Association (MLA), American Psychological Association (APA), OECD / EEA database по инструментам, которые используются для экологической политики и управления природными ресурсами, и Web of Science.Результаты и обсуждение. Фальсификация пищевых продуктов означает преднамеренное, обманное добавление посторонних, нестандартных или дешевых ингредиентов в продукты, или разбавление или удаление некоторых ценных ингредиентов с целью увеличения прибыли. В современных условиях производители стремятся увеличить выпуск своей продукции зачастую путем изготовления и продажи некачественных и фальсифицированных продуктов.“Неразрушающее выявление фальсификации пищевых продуктов” означает анализ образца и его существенных признаков без изменения физических и химических свойств образца. Повышение качества и безопасности пищевых продуктов путем разработки научных методов обнаружения фальсификации является главным условием для поддержания здоровья потребителей. Точная объективная оценка качества и выявление фальсификации пищевых продуктов представляется важнейшей целью пищевой промышленности. В связи с совершенствованием технологии фальсификации продуктов важно быть в курсе современных, самых точных методов контроля их фальсификации. С этой целью данный обзор рассматривает основные понятия выявления фальсификации продуктов питания, принципы устройств и возможные практические применения современных методов неразрушающего выявления фальсификации продуктов питания; сравнительный анализ преимуществ и недостатков инструментальных методов, используемых в пищевых технологиях. Каждый из рассмотренных методов обсуждается с точки зрения возможных различных консистенций продуктов – газов (свободного пространства вокруг продукта), свободно текущих жидкостей (соков), мутных и вязких жидкостей (меда как продукта растительного происхождения, растительных масел) и интактных продуктов (фруктов и овощей).Выводы. Результаты, освещенные в обзоре, рекомендуется использовать при контроле качества и безопасности пищевых продуктов.Метою даного огляду є критичний розгляд основних понять неруйнівного виявлення фальсифікації і підробки продуктів харчування, які в цілому викликають величезні щорічні фінансові збитки у всьому світі і є однією з основних причин захворювань людства. Матеріали і методи. Література, зазначена в даному огляді, була отримана в результаті пошуку бібліографічної інформації в in CAB abstracts, AGRICOLA, SciFinder Scholar, Modern Language Association (MLA), American Psychological Association (APA), OECD/EEA database щодо інструментів, які використовуються для екологічної політики та управління природними ресурсами, та Web of Science. Результати та обговорення. Фальсифікація харчових продуктів означає умисне, облудне додавання сторонніх, нестандартних або дешевих інгредієнтів в продукти, або розбавлення чи видалення деяких цінних інгредієнтів з метою збільшення прибутків. У сучасних умовах виробники прагнуть збільшити випуск своєї продукції найчастіше шляхом виготовлення та продажу неякісних та фальсифікованих продуктів. “Неруйнівне виявлення фальсифікації харчових продуктів” означає аналіз зразка і його істотних ознак без зміни фізичних і хімічних властивостей зразка. Підвищення якості та безпеки харчових продуктів шляхом розробки наукових методів виявлення фальсифікації є головною умовою для підтримки здоров’я споживачів. Точна об’єктивна оцінка якості і виявлення фальсифікації харчових продуктів представляється найважливішою метою харчової промисловості. У зв’язку з удосконаленням технології фальсифікації продуктів важливо бути в курсі сучасних, найбільш точних методів контролю їх фальсифікації. З цією метою даний огляд розглядає основні поняття виявлення фальсифікації продуктів харчування, принципи пристроїв і можливі практичні застосування сучасних методів неруйнівного виявлення фальсифікації продуктів харчування; порівняльний аналіз переваг і недоліків інструментальних методів, що застосовуються в харчових технологіях. Кожен з розглянутих методів обговорюється з точки зору можливих різних консистенцій продуктів - газів (вільного простору навколо продукту), вільно текучих рідин (соків), каламутних та в'язких рідин (меду як продукту рослинного походження, рослинних масел) і інтактних продуктів (фруктів і овочів). Висновки. Результати, висвітлені в огляді, рекомендується використовувати під час контролю якості та безпеки харчових продуктів

    Image-based metric heritage modeling in the near-infrared spectrum

    Get PDF
    Digital photogrammetry and spectral imaging are widely used in heritage sciences towards the comprehensive recording, understanding, and protection of historical artifacts and artworks. The availability of consumer-grade modified cameras for spectral acquisition, as an alternative to expensive multispectral sensors and multi-sensor apparatuses, along with semi-automatic software implementations of Structure-from-Motion (SfM) and Multiple-View-Stereo (MVS) algorithms, has made more feasible than ever the combination of those techniques. In the research presented here, the authors assess image-based modeling from near-infrared (NIR) imagery acquired with modified consumergrade cameras, with applications on tangible heritage. Three-dimensional (3D) meshes, textured with the non-visible data, are produced and evaluated. Specifically, metric evaluations are conducted through extensive comparisons with models produced with image-based modeling from visible (VIS) imagery and with structured light scanning, to check the accuracy of results. Furthermore, the authors observe and discuss, how the implemented NIR modeling approach, affects the surface of the reconstructed models, and may counteract specific problems which arise from lighting conditions during VIS acquisition. The radiometric properties of the produced results are evaluated, in comparison to the respective results in the visible spectrum, on the capacity to enhance observation towards the characterization of the surface and under-surface state of preservation, and consequently, to support conservation interventions

    Multispectral Metamaterial Detectors for Smart Imaging

    Get PDF
    The ability to produce a high quality infrared image has significantly improved since its initial development in the 1950s. The first generation consisted of a single pixel that required a two-dimensional raster scan to produce an image. The second generation comprised of a linear array of pixels that required a mechanical sweep to produce an image. The third generation utilizes a two-dimensional array of pixels to eliminate the need for a mechanical sweep. Third generation imaging technology incorporates pixels with single color or broadband sensitivity, which results in \u27black and white\u27 images. The research presented in this dissertation focuses on the development of 4th generation infrared detectors for the realization of a new generation of infrared focal plane array. To achieve this goal, we investigate metamaterials to realize multicolor detectors with enhanced quantum efficiency for similar function to a human retina. The key idea is to engineer the pixel such that it not only has the ability to sense multimodal data such as color, polarization, dynamic range and phase but also the intelligence to transmit a reduced data set to the central processing unit (neurophotonics). In this dissertation, we utilize both a quantum well infrared photodetector (QWIP) and interband cascade detector (ICD) hybridized with a metamaterial absorber for enhanced multicolor sensitivity in the infrared regime. Through this work, along with some design lessons throughout this iterative process, we design, fabricate and demonstrate the first deep-subwavelength multispectral infrared detector using an ultra-thin type-II superlattice (T2-SL) detector coupled with a metamaterial absorber with 7X enhanced quantum efficiency. We also identify useful versus non-useful absorption through a combination of absolute absorption and quantum efficiency measurements. In addition to these research efforts, we also demonstrate a dynamic multicolor metamaterial in the terahertz regime with electronically tunable frequency and gain for the first time. Utilizing an electronically tunable metamaterial, one can design an imaging system that can take multiple spectral responses within one frame for the classification of objects based on their spectral fingerprint.\u2

    A survey of image-based computational learning techniques for frost detection in plants

    Get PDF
    Frost damage is one of the major concerns for crop growers as it can impact the growth of the plants and hence, yields. Early detection of frost can help farmers mitigating its impact. In the past, frost detection was a manual or visual process. Image-based techniques are increasingly being used to understand frost development in plants and automatic assessment of damage resulting from frost. This research presents a comprehensive survey of the state-of the-art methods applied to detect and analyse frost stress in plants. We identify three broad computational learning approaches i.e., statistical, traditional machine learning and deep learning, applied to images to detect and analyse frost in plants. We propose a novel taxonomy to classify the existing studies based on several attributes. This taxonomy has been developed to classify the major characteristics of a significant body of published research. In this survey, we profile 80 relevant papers based on the proposed taxonomy. We thoroughly analyse and discuss the techniques used in the various approaches, i.e., data acquisition, data preparation, feature extraction, computational learning, and evaluation. We summarise the current challenges and discuss the opportunities for future research and development in this area including in-field advanced artificial intelligence systems for real-time frost monitoring

    Center for Space Microelectronics Technology. 1993 Technical Report

    Get PDF
    The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents. The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents
    corecore