5 research outputs found

    Time-of-Flight Sensors in standard CMSO technologies

    Get PDF
    The goal of this PhD thesis is the design of time-of-flight sensors in standard CMOS technologies. For this, device level and circuit level task will be addressed. In the first case we will model and characterize the sensory structure. In the second case we will design the necessary circuitry to read the information captured by the sensors. The thesis will begin with the study of non-conventional photosensor structures in standard CMOS technologies, and will continue with the design of a specific circuitry in this technology. Finally, the selected design will be fabricated and tested

    High Performance CMOS Range Imaging

    Get PDF
    Diese Arbeit fokussiert sich auf die Modellierung, Charakterisierung und Optimierung von Rauschen um den Entwurf von hochperformanten CMOS-Bildsensoren im Allgemeinen und von distanzgebenden Bildsensoren im Speziellen zu unterstützen. CMOS Bildsensorik ist bekannt dafür, den CCD-Sensoren bezüglich Flexibilität überlegen zu sein, aber modifizierter Prozesse zu bedürfen um vergleichbare Leistung in Parametern wie Rauschen, Dynamik oder Empfindlichkeit zu erreichen. Rauschen wird als einer der wichtigsten Parameter erachtet, da es die erreichbare Genauigkeit maßgeblich limitiert und nicht korrigiert werden kann. Diese Thesis präsentiert einen Überblick über die weit gefächerte Theorie des Rauschens und fügt ihr eine Methodik hinzu die Rauschperformance von zeitlich abgetasteten Systemen zu schätzen. Eine Charakterisierung der verfügbaren Bauelemente des verwendeten 0:35 µm 2P4M CMOS-Prozesses wurde durchgeführt und anhand heuristischer Betrachtungen und dem Kenntnisstand der Rausch-Theorie evaluiert. Diese fundamentalen Untersuchungen werden als Grundlage erachtet, die Vorhersagbarkeit der Rauschperformance von z.B. Bildsensoren zu verbessern. Rauschquellen von Fotodetektoren wurden in der Vergangenheit erforscht, wobei viele mit der Einführung der PPD minimiert werden konnten. Üblicherweise sind die verbleibenden dominanten Rauschquellen das Resetrauschen und das Rauschen der Ausleseschaltung. Um Letzteres zu verbessern, wurde eine neuartige JFET-basierte Auslesestruktur entwickelt, welche im Vergleich zu verfügbaren Standard-MOSFETs eine um ca. Faktor 100 verbesserte Rauschperformance für niedrige Frequenzen aufweist. ToF wird als eine Schlüssel-Technologie erachtet, die neue Applikationen z.B. in Machine Vision, Automobil, Surveillance und Unterhaltungselektronik ermöglicht. Das konkurrierende CW-Verfahren ist bekannt dafür, anfällig bzgl. Störungen z.B. durch Hintergrundbestrahlung zu sein. Das PM-ToF-Prinzip wird als eine vielversprechende Methode für widrige Bedingungen erachtet, die allerdings eines schnellen Fotodetektors bedarf. Diese Arbeit trug zu zwei Generationen von LDPD basierten ToF-Bildsensoren bei und präsentiert eine alternative Implementierung des MSI-PM-ToF Verfahrens. Es wurde nachgewiesen, dass diese eine wesentlich bessere Performance bzgl. Geschwindigkeit, Linearität, Dunkelstrom und Matching bietet. Ferner bietet diese Arbeit ein nichtlineares und zeitvariantes Modell des realisierten Sensorprinzips, welches ungewünschte Phänomene wie die endliche Ladungsträgergeschwindigkeit und eine parasitäre Fotoempfindlichkeit der Speicherknoten berücksichtigt, um Großsignal-, Sensitivitäts- und Rauschperformance erforschen zu können. Es wurde gezeigt, dass das Modell gegen ein "Standard"-Modell konvergiert und die Messungen gut nachbildet. Letztlich wurde die Auswirkung dieser ungewünschten Phänomene auf die Performance der Distanzmessung präsentiert.This work is dedicated to CMOS based imaging with the emphasis on the noise modeling, characterization and optimization in order to contribute to the design of high performance imagers in general and range imagers in particular. CMOS is known to be superior to CCD due to its flexibility in terms of integration capabilities, but typically has to be enhanced to compete at parameters as for instance noise, dynamic range or spectral response. Temporal noise is an important topic, since it is one of the most crucial parameters that ultimately limits the performance and cannot be corrected. This thesis gathers the widespread theory on noise and extends the theory by a non-rigorous but potentially computing efficient algorithm to estimate noise in time sampled systems. The available devices of the 0:35 µm 2P4M CMOS process were characterized for their low-frequency noise performance and mutually compared by heuristic observations and a comparison to the state of research. These investigations set the foundation for a more rigorous treatment of noise exhibition and are thus believed to improve the predictability of the performance of e.g. image sensors. Many noise sources of CMOS APS have been investigated in the past and most of them can be minimized by usage of a PPD as a photodetector. Remaining dominant noise sources typically are the reset noise and the noise from the readout circuitry. In order to improve the latter, an alternative JFET based readout structure is proposed that was designed, manufactured and measured, proving the superior low-frequency noise performance of approximately a factor of 100 compared to standard MOSFETs. ToF is one key technology to enable new applications in e.g. machine vision, automotive, surveillance or entertainment. The competing CW principle is known to be prone to errors introduced by e.g. high ambient illuminance levels. The PM ToF principle is considered to be a promising method to supply the need for depth-map perception in harsh environmental conditions, but requires a high-speed photodetector. This work contributed to two generations of LDPD based ToF range image sensors and proposed a new approach to implement the MSI PM ToF principle. This was verified to yield a significantly faster charge transfer, better linearity, dark current and matching performance. A non-linear and time-variant model is provided that takes into account undesired phenomena such as finite charge transfer speed and a parasitic sensitivity to light when the shutters should remain OFF, to allow for investigations of large-signal characteristics, sensitivity and precision. It was demonstrated that the model converges to a standard photodetector model and properly resembles the measurements. Finally the impact of these undesired phenomena on the range measurement performance is demonstrated

    CMOS Sensors for Time-Resolved Active Imaging

    Full text link
    In the past decades, time-resolved imaging such as fluorescence lifetime or time-of-flight depth imaging has been extensively explored in biomedical and industrial fields because of its non-invasive characterization of material properties and remote sensing capability. Many studies have shown its potential and effectiveness in applications such as cancer detection and tissue diagnoses from fluorescence lifetime imaging, and gesture/motion sensing and geometry sensing from time-of-flight imaging. Nonetheless, time-resolved imaging has not been widely adopted due to the high cost of the system and performance limits. The research presented in this thesis focuses on the implementation of low-cost real-time time-resolved imaging systems. Two image sensing schemes are proposed and implemented to address the major limitations. First, we propose a single-shot fluorescence lifetime image sensors for high speed and high accuracy imaging. To achieve high accuracy, previous approaches repeat the measurement for multiple sampling, resulting in long measurement time. On the other hand, the proposed method achieves both high speed and accuracy at the same time by employing a pixel-level processor that takes and compresses the multiple samples within a single measurement time. The pixels in the sensor take multiple samples from the fluorescent optical signal in sub-nanosecond resolution and compute the average photon arrival time of the optical signal. Thanks to the multiple sampling of the signal, the measurement is insensitive to the shape or the pulse-width of excitation, providing better accuracy and pixel uniformity than conventional rapid lifetime determination (RLD) methods. The proposed single-shot image sensor also improves the imaging speed by orders of magnitude compared to other conventional center-of-mass methods (CMM). Second, we propose a 3-D camera with a background light suppression scheme which is adaptable to various lighting conditions. Previous 3-D cameras are not operable in outdoor conditions because they suffer from measurement errors and saturation problems under high background light illumination. We propose a reconfigurable architecture with column-parallel discrete-time background light cancellation circuit. Implementing the processor at the column level allows an order of magnitude reduction in pixel size as compared to existing pixel-level processors. The column-level approach also provides reconfigurable operation modes for optimal performance in all lighting conditions. For example, the sensor can operate at the best frame-rate and resolution without the presence of background light. If the background light saturates the sensor or increases the shot noise, the sensor can adjust the resolution and frame-rate by pixel binning and superresolution techniques. This effectively enhances the well capacity of the pixel to compensate for the increase shot noise, and speeds up the frame processing to handle the excessive background light. A fabricated prototype sensor can suppress the background light more than 100-klx while achieving a very small pixel size of 5.9μm.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/136950/1/eecho_1.pd

    CMOS SPAD-based image sensor for single photon counting and time of flight imaging

    Get PDF
    The facility to capture the arrival of a single photon, is the fundamental limit to the detection of quantised electromagnetic radiation. An image sensor capable of capturing a picture with this ultimate optical and temporal precision is the pinnacle of photo-sensing. The creation of high spatial resolution, single photon sensitive, and time-resolved image sensors in complementary metal oxide semiconductor (CMOS) technology offers numerous benefits in a wide field of applications. These CMOS devices will be suitable to replace high sensitivity charge-coupled device (CCD) technology (electron-multiplied or electron bombarded) with significantly lower cost and comparable performance in low light or high speed scenarios. For example, with temporal resolution in the order of nano and picoseconds, detailed three-dimensional (3D) pictures can be formed by measuring the time of flight (TOF) of a light pulse. High frame rate imaging of single photons can yield new capabilities in super-resolution microscopy. Also, the imaging of quantum effects such as the entanglement of photons may be realised. The goal of this research project is the development of such an image sensor by exploiting single photon avalanche diodes (SPAD) in advanced imaging-specific 130nm front side illuminated (FSI) CMOS technology. SPADs have three key combined advantages over other imaging technologies: single photon sensitivity, picosecond temporal resolution and the facility to be integrated in standard CMOS technology. Analogue techniques are employed to create an efficient and compact imager that is scalable to mega-pixel arrays. A SPAD-based image sensor is described with 320 by 240 pixels at a pitch of 8μm and an optical efficiency or fill-factor of 26.8%. Each pixel comprises a SPAD with a hybrid analogue counting and memory circuit that makes novel use of a low-power charge transfer amplifier. Global shutter single photon counting images are captured. These exhibit photon shot noise limited statistics with unprecedented low input-referred noise at an equivalent of 0.06 electrons. The CMOS image sensor (CIS) trends of shrinking pixels, increasing array sizes, decreasing read noise, fast readout and oversampled image formation are projected towards the formation of binary single photon imagers or quanta image sensors (QIS). In a binary digital image capture mode, the image sensor offers a look-ahead to the properties and performance of future QISs with 20,000 binary frames per second readout with a bit error rate of 1.7 x 10-3. The bit density, or cumulative binary intensity, against exposure performance of this image sensor is in the shape of the famous Hurter and Driffield densitometry curves of photographic film. Oversampled time-gated binary image capture is demonstrated, capturing 3D TOF images with 3.8cm precision in a 60cm range

    ステレオ視方式三次元距離センサーLSIの高性能化に関する研究

    Get PDF
    九州工業大学博士学位論文 学位記番号:情工博甲第302号 学位授与年月日:平成27年3月25日第1章 序論|第2章 三次元センサーによる距離検知技術|第3章 三次元距離センサーLSIの高集積化|第4章 相関信号鮮明化機能搭載三次元距離センサーLSI|第5章 広ダイナミックレンジイメージセンサー搭載三次元距離センサーLSI|第6章 距離検知精度向上三次元距離センサーLSI|第7章 総括九州工業大学平成26年
    corecore