6 research outputs found

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Energy-efficient analog-to-digital conversion for ultra-wideband radio

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 207-222).In energy constrained signal processing and communication systems, a focus on the analog or digital circuits in isolation cannot achieve the minimum power consumption. Furthermore, in advanced technologies with significant variation, yield is traditionally achieved only through conservative design and a sacrifice of energy efficiency. In this thesis, these limitations are addressed with both a comprehensive mixed-signal design methodology and new circuits and architectures, as presented in the context of an analog-to-digital converter (ADC) for ultra-wideband (UWB) radio. UWB is an emerging technology capable of high-data-rate wireless communication and precise locationing, and it requires high-speed (>500MS/s), low-resolution ADCs. The successive approximation register (SAR) topology exhibits significantly reduced complexity compared to the traditional flash architecture. Three time-interleaved SAR ADCs have been implemented. At the mixed-signal optimum energy point, parallelism and reduced voltage supplies provide more than 3x energy savings. Custom control logic, a new capacitive DAC, and a hierarchical sampling network enable the high-speed operation. Finally, only a small amount of redundancy, with negligible power penalty, dramatically improves the yield of the highly parallel ADC in deep sub-micron CMOS.by Brian P. Ginsburg.Ph.D

    High performance zero-crossing based pipelined analog-to-digital converters

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 133-137).As CMOS processes continue to scale to smaller dimensions, the increased fT of the devices and smaller parasitic capacitance allow for more power ecient and faster digital circuits to be made. But at the same time, output impedance of transistors has gone down, as have the power supply voltages, and leakage currents have increased. These changes in the technology have made analog design more difficult. More specifically, the design of a high gain op-amp, a fundamental analog building block, has become more difficult in scaled processes. In this work, op-amps in pipelined ADCs are replaced with zero-crossing detectors(ZCD). Without the closed-loop feedback provided by the op-amp, a new set of design constraints for Zero-Crossing Based Circuits (ZCBC) is explored.by Yue Jack Chu.Ph.D

    A 14b threshold configurable dynamically latched comparator for SAR ADCs

    No full text
    This paper presents a dynamically latched threshold configurable comparator to eliminate the DAC in conventional SAR ADC designs. The comparator uses intentional circuit asymmetry to generate precise threshold or offset voltages. Four offset stages with resolutions of 15.5 μV, 316 μV, 7.9 mV and 29.85 mV are superimposed to yield a 282.6 mVpp tuning range. The high resolution is obtained by exploiting submicron deviations in device dimensions. The comparator has been designed and tested in 0.13 μm digital CMOS. DC measurements yield 14 bit resolution with 0.38 INL and 0.41 DNL. AC measurements at 6.25 MHz correlate well with the DC measurements. Noise is bandlimited to allow for sampling up to 50 MHz

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book
    corecore