45 research outputs found

    WIRELESS POWER MANAGEMENT CIRCUITS FOR BIOMEDICAL IMPLANTABLE SYSTEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design of Power Management Integrated Circuits and High-Performance ADCs

    Get PDF
    A battery-powered system has widely expanded its applications to implantable medical devices (IMDs) and portable electronic devices. Since portable devices or IMDs operate in the energy-constrained environment, their low-power operations in combination with efficiently sourcing energy to them are key problems to extend device life. This research proposes novel circuit techniques for two essential functions of a power receiving unit (PRU) in the energy-constrained environment, which are power management and signal processing. The first part of this dissertation discusses power management integrated circuits for a PRU. From a power management perspective, the most critical two circuit blocks are a front-end rectifier and a battery charger. The front-end CMOS active rectifier converts transmitted AC power into DC power. High power conversion efficiency (PCE) is required to reduce power loss during the power transfer, and high voltage conversion ratio (VCR) is required for the rectifier to enable low-voltage operations. The proposed 13.56-MHz CMOS active rectifier presents low-power circuit techniques for comparators and controllers to reduce increasing power loss of an active diode with offset/delay calibration. It is implemented with 5-V devices of a 0.35 µm CMOS process to support high voltage. A peak PCE of 89.0%, a peak VCR of 90.1%, and a maximum output power of 126.7 mW are measured for 200Ω loading. The linear battery charger stores the converted DC power into a battery. Since even small power saving can be enough to run the low-power PRU, a battery charger with low IvQ is desirable. The presented battery charger is based on a single amplifier for regulation and the charging phase transition from the constant-current (CC) phase to the constant-voltage (CV) phase. The proposed unified amplifier is based on stacked differential pairs which share the bias current. Its current-steering property removes multiple amplifiers for regulation and the CC-CV transition, and achieves high unity-gain loop bandwidth for fast regulation. The charger with the maximum charging current of 25 mA is implemented in 0.35 µm CMOS. A peak charger efficiency of 94% and average charger efficiency of 88% are achieved with an 80-mAh Li-ion polymer battery. The second part of this dissertation focuses on analog-to-digital converters (ADCs). From a signal processing perspective, an ADC is one of the most important circuit blocks in the PRU. Hence, an energy-efficient ADC is essential in the energy-constrained environment. A pipelined successive approximation register (SAR) ADC has good energy efficiency in a design space of moderate-to-high speeds and resolutions. Process-Voltage-Temperature variations of a dynamic amplifier in the pipelined-SAR ADC is a key design issue. This research presents two dynamic amplifier architectures for temperature compensation. One is based on a voltage-to-time converter (VTC) and a time-to-voltage converter (TVC), and the other is based on a temperature-dependent common-mode detector. The former amplifier is adopted in a 13-bit 10-50 MS/s subranging pipelined-SAR ADC fabricated in 0.13-µm CMOS. The ADC can operate under the power supply voltage of 0.8-1.2 V. Figure-of-Merits (FoMs) of 4-11.3 fJ/conversion-step are achieved. The latter amplifier is also implemented in 0.13-µm CMOS, consuming 0.11 mW at 50 MS/s. Its measured gain variation is 2.1% across the temperature range of -20°C to 85 °C

    Circuits and systems for inductive power transfer

    Get PDF
    Recently, the development of Wireless Power Transfer (WPT) systems has shown to be a key factor for improving the robustness, usability and autonomy of many mobile devices. The WPT link relaxes the trade-off between the battery size and the power availability, enabling highly innovative applications. This thesis aims to develop novel techniques to increase efficiency and operating distance of inductive power transfer systems. We addressed the design of the inductive link and various circuits used in the receiver. Moreover, we performed a careful system-level analysis, taking into account the design of different blocks and their interaction. The analysis is oriented towards the development of low power applications, such as Active Implantable Medical Device (AIMD) or Radio-Frequency Identification (RFID) systems. Three main approaches were considered to increase efficiency and operating distance: 1) The use of additional resonant coils, placed between the transmitter and the receiver. 2) The receiver coil impedance matching. 3) The design of high-efficiency rectifiers and dc-dc converters. The effect of the additional coils in the inductive link is usually studied without considering its influence on other parts of the WPT system. In this work, we theoretically analyzed and compared 2 and 3-coil links, showing the advantages of using the additional coil together with a matching network in the receiver. The effect of the additional coils in a closed-loop regulated system is also addressed, demonstrating that the feedback-loop design should consider the number of coils used in the link. Furthermore, the inclusion of one additional resonant coil in an actual half-duplex RFID system at 134:2 kHz is presented. The maximum efficiency point can be achieved by adjusting the receiver coil load impedance in order to reach its optimum value. In inductive powering, this optimum impedance is often achieved by adapting the input impedance of a dc-dc converter in the receiver. A matching network can also be used for the same purpose, as have been analyzed in previous works. In this thesis, we propose a joint design using both, matching network and dc-dc converters, highlighting the benefits of using the combined approach. A rectifier must be included in any WPT receiver. Usually, a dc-dc converter is included after the rectifier to adjust the output voltage or control the rectifier load impedance. The efficiency of both, rectifier and dc-dc converter, impacts not only the load power but also the receiver dissipation. In applications such as AIMDs, to get the most amount of power with low dissipation is crucial to full safety requirements. We present the design of an active rectifier and a switched capacitor dc-dc converter. In low-power applications, the power consumption of any auxiliary block used in the circuit may decrease the efficiency due to its quiescent consumption. Therefore, we have carefully designed these auxiliary blocks, such as operational transconductance amplifiers and voltage comparators. The main contributions of this thesis are: . Deduction of simplified equations to compare 2 and 3-coil links with an optimized Matching Network (MN). . Development of a 3-coil link half-duplex RFID 134.2 kHz system. . Analysis of the influence of the titanium case in the inductive link of implantable medical devices. . Development of a joint design ow which exploits the advantages of using both MNs and dc-dc converters in the receiver to achieve load impedance matching. . Analysis of closed-loop postregulated systems, highlighting the effects that the additional coils, receiver resonance (series or parallel), and type of driver (voltage or current) used in the transmitter, have in the feedback control loop. . Proposal of systematic analysis and design of charge recycling switches in step-up dc-dc converters. . New architecture for low-power high slew-rate operational transconductance amplifier. Novel architecture for high-efficiency active rectifier. The thesis is essentially based on the publications [1{9]. During the PhD program, other publications were generated [10{15] that are partially or non-included in the thesis. Additionally, some contributions presented in the text, are in process of publication.Hace ya un buen tiempo que las redes inalámbricas constituyen uno de los temas de investigación más estudiados en el área de las telecomunicaciones. Actualmente un gran porcentaje de los esfuerzos de la comunidad científifica y del sector industrial están concentrados en la definición de los requerimientos y estándares de la quinta generación de redes móviles. 5G implicará la integración y adaptación de varias tecnologías, no solo del campo de las telecomunicaciones sino también de la informática y del análisis de datos, con el objetivo de lograr una red lo suficientemente flexible y escalable como para satisfacer los requerimientos para la enorme variedad de casos de uso implicados en el desarrollo de la “sociedad conectada”. Un problema que se presenta en las redes inalámbricas actuales, que por lo tanto genera un desafío más que interesante para lo que se viene, es la escasez de espectro radioeléctrico para poder asignar bandas a nuevas tecnologías y nuevos servicios. El espectro está sobreasignado a los diferentes servicios de telecomunicaciones existentes y las bandas de uso libre o no licenciadas están cada vez más saturadas de equipos que trabajan en ellas (basta pensar lo que sucede en la banda no licenciada de 2.4 GHz). Sin embargo, existen análisis y mediciones que muestran que en diversas zonas y en diversas escalas de tiempo, el espectro radioeléctrico, si bien está formalmente asignado a algún servicio, no se utiliza plenamente existiendo tiempos durante los cuales ciertas bandas están libres y potencialmente podrían ser usadas. Esto ha llevado a que las Redes Radios Cognitivas, concepto que existe desde hace un tiempo, sean consideradas uno de los pilares para el desarrollo de las redes inalámbricas del futuro. En los ultimos años la transferencia inalámbrica de energía (WPT) ha cobrado especial atención, ya que logra aumentar la robustez, usabilidad y autonomía de los dispositivos móviles. Transferir energía inalámbricamente relaja el compromiso entre el tamaño de la batería y la disponibilidad de energía, permitiendo aplicaciones que de otro modo no serían posibles. Esta tesis tiene como objetivo desarrollar técnicas novedosas para aumentar la eficiencia y la distancia de transmisión de sistemas de transferencia inalámbrica por acople inductivo (IPT). Se abordó el diseño del enlace inductivo y varios circuitos utilizados en el receptor de energía. Además, realizamos un cuidadoso análisis a nivel sistema, teniendo en cuenta el diseño conjunto de diferentes bloques. Todo el trabajo está orientado hacia el desarrollo de aplicaciones de bajo consumo, como dispositivos médicos implantables activos (AIMD) o sistemas de identificación por radio frecuencia (RFID). Se consideraron principalmente tres enfoques para lograr mayor eficienciay distancia: 1) El uso de bobinas resonantes adicionales, colocadas entre el transmisor y el receptor. 2) El uso de redes de adaptación de impedancia en el receptor. 3) El diseño de circuitos rectificdores y conversores dc-dc con alta eficiencia.El efecto ocasionado por las bobinas resonantes adicionales en el enlace inductivo es usualmente abordado sin tener en cuenta su influenciaen todas las partes del sistema. En este trabajo, analizamos teóricamente y comparamos sistemas de 2 y 3 bobinas, mostrando las ventajas que tiene la bobina adicional en conjunto con el uso de redes de adaptación. El efecto de dicha bobina, en sistemas de lazo cerrado fue también estudiado, demostrando que el diseño del lazo debe considerar el número de bobinas que utiliza el link. Se trabajó con un sistema real de RFID, analizando el uso de una bobina resonante en una aplicación práctica existente y de amplio uso en el Uruguay

    Innovative Wireless Power Receiver for Inductive Coupling and Magnetic Resonance Applications

    Get PDF
    This chapter presents a wireless power receiver for inductive coupling and magnetic resonance applications. The active rectifier with shared delay-locked loop (DLL) is proposed to achieve the high efficiency for different operation frequencies. In the DC–DC converter, the phase-locked loop is adopted for the constant switching frequency in the process, voltage, and temperature variation to solve the efficiency reduction problem, which results in the heat problem. An automatic mode switching between pulse width modulation and pulse frequency modulation is also adopted for the high efficiency over the wide output power. This chip is implemented using 0.18 μm BCD technology with an active area of 5.0 mm × 3.5 mm. The maximum efficiency of the active rectifier is 92%, and the maximum efficiency of the DC–DC converter is 92% when the load current is 700 mA

    Wireless Power Transfer System for Battery-Less Body Implantable Devices

    Get PDF
    Department of Electrical EngineeringAs the life expectancy is increased and the welfare is promoted, researches on the body implantable medical devices (BIMD) are actively being carried out, and products providing more various functions are being released. On the other hand, due to these various functions, the power consumption of the BIMD is also increased, so that the primary battery alone cannot provide sufficient power for the devices. The limited capacity and life time of batteries force patients to make an additional payment and suffering for the power supply of the BIMD. Wireless power transfer technology is the technology which has been making remarkable progress mainly in wireless charging for personal portable devices and electric vehicles. Convergence of wireless power transfer technology (WPT) and rechargeable battery can extend the life time of the BIMD and reduce the suffering and the cost for battery replacements. Furthermore, WPT enables the devices which do not need to operate consistently such as body implantable sensor devices to be used without batteries. In this dissertation, techniques to support WPT for BIMD are introduced and proposed. First, basic researches on magnetic coupled WPT are presented. The basics which are important factors to analyze power transmission are introduced. In addition, circuits that make up the WPT system are described. There are three common technical challenges in WPT. Those are efficiency degradation on coil geometry, voltage gain variation with coil geometry, and power losses in WPT. The common challenges are discussed in chapter II. Moreover, additional challenges which are arisen in WPT for BIMD and approaches to resolve the challenges are addressed in chapter II. Then, efficiency improvement techniques and control techniques in WPT are presented in chapter III. The presented techniques to improve efficiency are applied in coil parts and circuit parts. In coil parts, efficiency enhancement technique by geometric variation is proposed. In circuit parts, instantaneous power consuming technique for step-down converter is suggested. Li-ion battery charger is also discussed in chapter III. Additionally, the wireless controlled constant current / constant voltage charging mode and the proposed step charging method are described. After that, WPT system for BIMD is discussed one by one with the proposed techniques for each part in chapter IV. A load transformation is suggested to improve efficiency in weak coupling, and suppress voltage gain variation under coil displacement. Power conversion efficiency improvement techniques for rectifier and converter are also proposed. By using the proposed technique for the converter, we can remove the bootstrap capacitors, and reduce the overall size of power circuits. In conclusion, techniques in coil parts and circuit parts to handle challenges in WPT for BIMD are fully investigated in this thesis in addition to the efficiency improvement and control techniques in common WPT. All the techniques are verified through simulations or experiments. The approaches realized in the thesis can be applied to other applications employing the WPT.clos

    Inductively Coupled CMOS Power Receiver For Embedded Microsensors

    Get PDF
    Inductively coupled power transfer can extend the lifetime of embedded microsensors that save costs, energy, and lives. To expand the microsensors' functionality, the transferred power needs to be maximized. Plus, the power receiver needs to handle wide coupling variations in real applications. Therefore, the objective of this research is to design a power receiver that outputs the highest power for the widest coupling range. This research proposes a switched resonant half-bridge power stage that adjusts both energy transfer frequency and duration so the output power is maximally high. A maximum power point (MPP) theory is also developed to predict the optimal settings of the power stage with 98.6% accuracy. Finally, this research addresses the system integration challenges such as synchronization and over-voltage protection. The fabricated self-synchronized prototype outputs up to 89% of the available power across 0.067%~7.9% coupling range. The output power (in percentage of available power) and coupling range are 1.3× and 13× higher than the comparable state of the arts.Ph.D
    corecore