121 research outputs found

    The Impact of Noise and Mismatch on SAR ADCs and a Calibratable Capacitance Array Based Approach for High Resolutions

    Get PDF
    This paper describes widely used capacitor structures for charge-redistribution (CR) successive approximation register (SAR) based analog-to-digital converters (ADCs) and analyzes their linearity limitations due to kT/C noise, mismatch and parasitics. Results of mathematical considerations and statistical simulations are presented which show that most widespread dimensioning rules are overcritical. For high-resolution CR SAR ADCs in current CMOS technologies, matching of the capacitors, influenced by local mismatch and parasitics, is a limiting factor. For high-resolution medium-speed CR SAR ADCs, a novel capacitance array based approach using in-field calibration is proposed. This architecture promises a high resolution with small unit capacitances and without expensive factory calibration as laser trimming

    DESIGN OF LOW-POWER LOW-VOLTAGE SUCCESSIVE-APPROXIMATION ANALOG-TO-DIGITAL CONVERTERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Low-power adaptive control scheme using switching activity measurement method for reconfigurable analog-to-digital converters

    Get PDF
    Power consumption is a critical issue for portable devices. The ever-increasing demand for multimode wireless applications and the growing concerns towards power-aware green technology make dynamically reconfigurable hardware an attractive solution for overcoming the power issue. This is due to its advantages of flexibility, reusability, and adaptability. During the last decade, reconfigurable analog-to-digital converters (ReADCs) have been used to support multimode wireless applications. With the ability to adaptively scale the power consumption according to different operation modes, reconfigurable devices utilise the power supply efficiently. This can prolong battery life and reduce unnecessary heat emission to the environment. However, current adaptive mechanisms for ReADCs rely upon external control signals generated using digital signal processors (DSPs) in the baseband. This thesis aims to provide a single-chip solution for real-time and low-power ReADC implementations that can adaptively change the converter resolution according to signal variations without the need of the baseband processing. Specifically, the thesis focuses on the analysis, design and implementation of a low-power digital controller unit for ReADCs. In this study, the following two important reconfigurability issues are investigated: i) the detection mechanism for an adaptive implementation, and ii) the measure of power and area overheads that are introduced by the adaptive control modules. This thesis outlines four main achievements to address these issues. The first achievement is the development of the switching activity measurement (SWAM) method to detect different signal components based upon the observation of the output of an ADC. The second achievement is a proposed adaptive algorithm for ReADCs to dynamically adjust the resolution depending upon the variations in the input signal. The third achievement is an ASIC implementation of the adaptive control module for ReADCs. The module achieves low reconfiguration overheads in terms of area and power compared with the main analog part of a ReADC. The fourth achievement is the development of a low-power noise detection module using a conventional ADC for signal improvement. Taken together, the findings from this study demonstrate the potential use of switching activity information of an ADC to adaptively control the circuits, and simultaneously expanding the functionality of the ADC in electronic systems
    • …
    corecore