400 research outputs found

    Power and area efficient reconfigurable delta sigma ADCs

    Get PDF

    Architectural Alternatives to Implement High-Performance Delta-Sigma Modulators

    Get PDF
    RÉSUMÉ Le besoin d’appareils portatifs, de téléphones intelligents et de systèmes microélectroniques implantables médicaux s’accroît remarquablement. Cependant, l’optimisation de l’alimentation de tous ces appareils électroniques portables est l’un des principaux défis en raison du manque de piles à grande capacité utilisées pour les alimenter. C’est un fait bien établi que le convertisseur analogique-numérique (CAN) est l’un des blocs les plus critiques de ces appareils et qu’il doit convertir efficacement les signaux analogiques au monde numérique pour effectuer un post-traitement tel que l’extraction de caractéristiques. Parmi les différents types de CAN, les modulateurs Delta Sigma (��M) ont été utilisés dans ces appareils en raison des fonctionnalités alléchantes qu’ils offrent. En raison du suréchantillonnage et pour éloigner le bruit de la bande d’intérêt, un CAN haute résolution peut être obtenu avec les architectures ��. Il offre également un compromis entre la fréquence d’échantillonnage et la résolution, tout en offrant une architecture programmable pour réaliser un CAN flexible. Ces CAN peuvent être implémentés avec des blocs analogiques de faible précision. De plus, ils peuvent être efficacement optimisés au niveau de l’architecture et circuits correspondants. Cette dernière caractéristique a été une motivation pour proposer différentes architectures au fil des ans. Cette thèse contribue à ce sujet en explorant de nouvelles architectures pour optimiser la structure ��M en termes de résolution, de consommation d’énergie et de surface de silicium. Des soucis particuliers doivent également être pris en compte pour faciliter la mise en œuvre du ��M. D’autre part, les nouveaux procédés CMOS de conception et fabrication apportent des améliorations remarquables en termes de vitesse, de taille et de consommation d’énergie lors de la mise en œuvre de circuits numériques. Une telle mise à l’échelle agressive des procédés, rend la conception de blocs analogiques tel que un amplificateur de transconductance opérationnel (OTA), difficile. Par conséquent, des soins spéciaux sont également pris en compte dans cette thèse pour surmonter les problèmes énumérés. Ayant mentionné ci-dessus que cette thèse est principalement composée de deux parties principales. La première concerne les nouvelles architectures implémentées en mode de tension et la seconde partie contient une nouvelle architecture réalisée en mode hybride tension et temps.----------ABSTRACT The need for hand-held devices, smart-phones and medical implantable microelectronic sys-tems, is remarkably growing up. However, keeping all these electronic devices power optimized is one of the main challenges due to the lack of long life-time batteries utilized to power them up. It is a well-established fact that analog-to-digital converter (ADC) is one of the most critical building blocks of such devices and it needs to efficiently convert analog signals to the digital world to perform post processing such as channelizing, feature extraction, etc. Among various type of ADCs, Delta Sigma Modulators (��Ms) have been widely used in those devices due to the tempting features they offer. In fact, due to oversampling and noise-shaping technique a high-resolution ADC can be achieved with �� architectures. It also offers a compromise between sampling frequency and resolution while providing a highly-programmable approach to realize an ADC. Moreover, such ADCs can be implemented with low-precision analog blocks. Last but not the least, they are capable of being effectively power optimized at both architectural and circuit levels. The latter has been a motivation to proposed different architectures over the years.This thesis contributes to this topic by exploring new architectures to effectively optimize the ��M structure in terms of resolution, power consumption and chip area. Special cares must also be taken into account to ease the implementation of the ��M. On the other hand, advanced node CMOS processes bring remarkable improvements in terms of speed, size and power consumption while implementing digital circuits. Such an aggressive process scaling, however, make the design of analog blocks, e.g. operational transconductance amplifiers (OTAs), cumbersome. Therefore, special cares are also taken into account in this thesis to overcome the mentioned issues. Having had above mentioned discussion, this thesis is mainly split in two main categories. First category addresses new architectures implemented in a pure voltage domain and the second category contains new architecture realized in a hybrid voltage and time domain. In doing so, the thesis first focuses on a switched-capacitor implementation of a ��M while presenting an architectural solution to overcome the limitations of the previous approaches. This limitations include a power hungry adder in a conventional feed-forward topology as well as power hungry OTAs

    Design of sigma-delta modulators for analog-to-digital conversion intensively using passive circuits

    Get PDF
    This thesis presents the analysis, design implementation and experimental evaluation of passiveactive discrete-time and continuous-time Sigma-Delta (ΣΔ) modulators (ΣΔMs) analog-todigital converters (ADCs). Two prototype circuits were manufactured. The first one, a discrete-time 2nd-order ΣΔM, was designed in a 130 nm CMOS technology. This prototype confirmed the validity of the ultra incomplete settling (UIS) concept used for implementing the passive integrators. This circuit, clocked at 100 MHz and consuming 298 μW, achieves DR/SNR/SNDR of 78.2/73.9/72.8 dB, respectively, for a signal bandwidth of 300 kHz. This results in a Walden FoMW of 139.3 fJ/conv.-step and Schreier FoMS of 168 dB. The final prototype circuit is a highly area and power efficient ΣΔM using a combination of a cascaded topology, a continuous-time RC loop filter and switched-capacitor feedback paths. The modulator requires only two low gain stages that are based on differential pairs. A systematic design methodology based on genetic algorithm, was used, which allowed decreasing the circuit’s sensitivity to the circuit components’ variations. This continuous-time, 2-1 MASH ΣΔM has been designed in a 65 nm CMOS technology and it occupies an area of just 0.027 mm2. Measurement results show that this modulator achieves a peak SNR/SNDR of 76/72.2 dB and DR of 77dB for an input signal bandwidth of 10 MHz, while dissipating 1.57 mW from a 1 V power supply voltage. The ΣΔM achieves a Walden FoMW of 23.6 fJ/level and a Schreier FoMS of 175 dB. The innovations proposed in this circuit result, both, in the reduction of the power consumption and of the chip size. To the best of the author’s knowledge the circuit achieves the lowest Walden FOMW for ΣΔMs operating at signal bandwidth from 5 MHz to 50 MHz reported to date

    Linearization of Time-encoded ADCs Architectures for Smart MEMS Sensors in Low Power CMOS Technology

    Get PDF
    Mención Internacional en el título de doctorIn the last few years, the development of mobile technologies and machine learning applications has increased the demand of MEMS-based digital microphones. Mobile devices have several microphones enabling noise canceling, acoustic beamforming and speech recognition. With the development of machine learning applications the interest to integrate sensors with neural networks has increased. This has driven the interest to develop digital microphones in nanometer CMOS nodes where the microphone analog-front end and digital processing, potentially including neural networks, is integrated on the same chip. Traditionally, analog-to-digital converters (ADCs) in digital microphones have been implemented using high order Sigma-Delta modulators. The most common technique to implement these high order Sigma-Selta modulators is switchedcapacitor CMOS circuits. Recently, to reduce power consumption and make them more suitable for tasks that require always-on operation, such as keyword recognition, switched-capacitor circuits have been improved using inverter-based operational amplifier integrators. Alternatively, switched-capacitor based Sigma- Delta modulators have been replaced by continuous time Sigma-Delta converters. Nevertheless, in both implementations the input signal is voltage encoded across the modulator, making the integration in smaller CMOS nodes more challenging due to the reduced voltage supply. An alternative technique consists on encoding the input signal on time (or frequency) instead of voltage. This is what time-encoded converters do. Lately, time-encoding converters have gained popularity as they are more suitable to nanometer CMOS nodes than Sigma-Delta converters. Among the ones that have drawn more interest we find voltage-controlled oscillator based ADCs (VCOADCs). VCO-ADCs can be implemented using CMOS inverter based ring oscillators (RO) and digital circuitry. They also show noise-shaping properties. This makes them a very interesting alternative for implementation of ADCs in nanometer CMOS nodes. Nevertheless, two main circuit impairments are present in VCO-ADCs, and both come from the oscillator non-idealities. The first of them is the oscillator phase noise, that reduces the resolution of the ADC. The second is the non-linear tuning curve of the oscillator, that results in harmonic distortion at medium to high input amplitudes. In this thesis we analyze the use of time encoding ADCs for MEMS microphones with special focus on ring oscillator based ADCs (RO-ADCs). Firstly, we study the use of a dual-slope based SAR noise shaped quantizer (SAR-NSQ) in sigma-delta loops. This quantizer adds and extra level of noise-shaping to the modulator, improving the resolution. The quantizer is explained, and equations for the noise transfer function (NTF) of a third order sigma-delta using a second order filter and the NSQ are presented. Secondly, we move our attention to the topic of RO-ADCs. We present a high dynamic range MEMS microphone 130nm CMOS chip based on an open-loop VCO-ADC. This dissertation shows the implementation of the analog front-end that includes the oscillator and the MEMS interface, with a focus on achieving low power consumption with low noise and a high dynamic range. The digital circuitry is left to be explained by the coauthor of the chip in his dissertation. The chip achieves a 80dBA peak SNDR and 108dB dynamic range with a THD of 1.5% at 128 dBSPL with a power consumption of 438μW. After that, we analyze the use of a frequency-dependent-resistor (FDR) to implement an unsampled feedback loop around the oscillator. The objective is to reduce distortion. Additionally phase noise mitigation is achieved. A first topology including an operational amplifier to increase the loop gain is analyzed. The design is silicon proven in a 130 nm CMOS chip that achieves a 84 dBA peak SNDR with an analog power consumption of 600μW. A second topology without the operational amplifier is also analyzed. Two chips are designed with this topology. The first chip in 130 nm CMOS is a full VCO-ADC including the frequencyto- digital converter (F2D). This chip achieves a peak SNDR of 76.6 dBA with a power consumption of 482μW. The second chip includes only the oscillator and is implemented in 55nm CMOS. The peak SNDR is 78.15 dBA and the analog power consumption is 153μW. To finish this thesis, two circuits that use an FDR with a ring oscillator are presented. The first is a capacity-to-digital converter (CDC). The second is a filter made with an FDR and an oscillator intended for voice activity detection tasks (VAD).En los últimos años, el desarrollo de las tecnologías móviles y las aplicaciones de machine-learning han aumentado la demanda de micrófonos digitales basados en MEMS. Los dipositivos móviles tienen varios micrófonos que permiten la cancelación de ruido, el beamforming o conformación de haces y el reconocimiento de voz. Con el desarrollo de aplicaciones de aprendizaje automático, el interés por integrar sensores con redes neuronales ha aumentado. Esto ha impulsado el interés por desarrollar micrófonos digitales en nodos CMOS nanométricos donde el front-end analógico y el procesamiento digital del micrófono, que puede incluir redes neuronales, está integrado en el mismo chip. Tradicionalmente, los convertidores analógicos-digitales (ADC) en micrófonos digitales han sido implementados utilizando moduladores Sigma-Delta de orden elevado. La técnica más común para implementar estos moduladores Sigma- Delta es el uso de circuitos CMOS de capacidades conmutadas. Recientemente, para reducir el consumo de potencia y hacerlos más adecuados para las tareas que requieren una operación continua, como el reconocimiento de palabras clave, los convertidores Sigma-Delta de capacidades conmutadas has sido mejorados con el uso de integradores implementados con amplificadores operacionales basados en inversores CMOS. Alternativamente, los Sigma-Delta de capacidades conmutadas han sido reemplazados por moduladores en tiempo continuo. No obstante, en ambas implementaciones, la señal de entrada es codificada en voltaje durante el proceso de conversión, lo que hace que la integración en nodos CMOS más pequeños sea complicada debido a la menor tensión de alimentación. Una técnica alternativa consiste en codificar la señal de entrada en tiempo (o frecuencia) en lugar de tensión. Esto es lo que hacen los convertidores de codificación temporal. Recientemente, los convertidores de codificación temporal han ganado popularidad ya que son más adecuados para nodos CMOS nanométricos que los convertidores Sigma-Delta. Entre los que más interés han despertado encontramos los ADCs basados en osciladores controlados por tensión (VCO-ADC). Los VCO-ADC se pueden implementar usando osciladores en anillo (RO) implementados con inversores CMOS y circuitos digitales. Esta familia de convertidores también tiene conformado de ruido. Esto los convierte en una alternativa muy interesante para la implementación de convertidores en nodos CMOS nanométricos. Sin embargo, dos problemas principales están presentes en este tipo de ADCs debidos ambos a las no idealidades del oscilador. El primero de los problemas es la presencia de ruido de fase en el oscilador, lo que reduce la resolución del ADC. El segundo es la curva de conversion voltaje-frecuencia no lineal del oscilador, lo que causa distorsión a amplitudes medias y altas. En esta tesis analizamos el uso de ADCs de codificación temporal para micrófonos MEMS, con especial interés en ADCS basados en osciladores de anillo (RO-ADC). En primer lugar, estudiamos el uso de un cuantificador SAR con conformado de ruido (SAR-NSQ) en moduladores Sigma-Delta. Este cuantificador agrega un orden adicional de conformado de ruido al modulador, mejorando la resolución. En este documento se explica el cuantificador y obtienen las ecuaciones para la función de transferencia de ruido (NTF) de un sigma-delta de tercer orden usando un filtro de segundo orden y el NSQ. En segundo lugar, dirigimos nuestra atención al tema de los RO-ADC. Presentamos el chip de un micrófono MEMS de alto rango dinámico en CMOS de 130 nm basado en un VCO-ADC de bucle abierto. En esta tesis se explica la implementación del front-end analógico que incluye el oscilador y la interfaz con el MEMS. Esta implementación se ha llevado a cabo con el objetivo de lograr un bajo consumo de potencia, un bajo nivel de ruido y un alto rango dinámico. La descripción del back-end digital se deja para la tesis del couator del chip. La SNDR de pico del chip es de 80dBA y el rango dinámico de 108dB con una THD de 1,5% a 128 dBSPL y un consumo de potencia de 438μW. Finalmente, se analiza el uso de una resistencia dependiente de frecuencia (FDR) para implementar un bucle de realimentación no muestreado alrededor del oscilador. El objetivo es reducir la distorsión. Además, también se logra la mitigación del ruido de fase del oscilador. Se analyza una primera topologia de realimentación incluyendo un amplificador operacional para incrementar la ganancia de bucle. Este diseño se prueba en silicio en un chip CMOS de 130nm que logra un pico de SNDR de 84 dBA con un consumo de potencia de 600μW en la parte analógica. Seguidamente, se analiza una segunda topología sin el amplificador operacional. Se fabrican y miden dos chips diseñados con esta topologia. El primero de ellos en CMOS de 130 nm es un VCO-ADC completo que incluye el convertidor de frecuencia a digital (F2D). Este chip alcanza un pico SNDR de 76,6 dBA con un consumo de potencia de 482μW. El segundo incluye solo el oscilador y está implementado en CMOS de 55nm. El pico SNDR es 78.15 dBA y el el consumo de potencia analógica es de 153μW. Para cerrar esta tesis, se presentan dos circuitos que usan la FDR con un oscilador en anillo. El primero es un convertidor de capacidad a digital (CDC). El segundo es un filtro realizado con una FDR y un oscilador, enfocado a tareas de detección de voz (VAD).Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Antonio Jesús Torralba Silgado.- Secretaria: María Luisa López Vallejo.- Vocal: Pieter Rombout

    A Low-Power Sigma-Delta Modulator for Healthcare and Medical Diagnostic Applications

    Get PDF
    This paper presents a switched-capacitor Sigma-Delta modulator designed in 90-nm CMOS technology, operating at 1.2-V supply voltage. The modulator targets healthcare and medical diagnostic applications where the readout of small-bandwidth signals is required. The design of the proposed A/D converter was optimized to achieve the minimum power consumption and area. A remarkable performance improvement is obtained through the integration of a low-noise amplifier with modified Miller compensation and rail-to-rail output stage. The manuscript also presents a set of design equations, from the small-signal analysis of the amplifier, for an easy design of the modulator in different technology nodes. The Sigma-Delta converter achieves a measured 96-dB dynamic range, over a 250-Hz signal bandwidth, with an oversampling ratio of 500. The power consumption is 30 μW, with a silicon area of 0.39 mm²

    LOW-VOLTAGE LOW-POWER ANALOG-TO-DIGITAL CONVERTERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore