114 research outputs found

    A 192×128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology

    Get PDF
    A 192 X 128 pixel single photon avalanche diode (SPAD) time-resolved single photon counting (TCSPC) image sensor is implemented in STMicroelectronics 40-nm CMOS technology. The 13% fill factor, 18.4\,\,\mu \text {m} \times 9.2\,\,\mu \text{m} pixel contains a 33-ps resolution, 135-ns full scale, 12-bit time-to-digital converter (TDC) with 0.9-LSB differential and 5.64-LSB integral nonlinearity (DNL/INL). The sensor achieves a mean 219-ps full-width half-maximum (FWHM) impulse response function (IRF) and is operable at up to 18.6 kframes/s through 64 parallelized serial outputs. Cylindrical microlenses with a concentration factor of 3.25 increase the fill factor to 42%. The median dark count rate (DCR) is 25 Hz at 1.5-V excess bias. A digital calibration scheme integrated into a column of the imager allows off-chip digital process, voltage, and temperature (PVT) compensation of every frame on the fly. Fluorescence lifetime imaging microscopy (FLIM) results are presented

    SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review

    Get PDF
    Single-photon avalanche diodes (SPADs) emerged as the most suitable photodetectors for both single-photon counting and photon-timing applications. Different complementary metal-oxide-semiconductor (CMOS) devices have been reported in the literature, with quite different performance and some excelling in just few of them, but often at different operating conditions. In order to provide proper criteria for performance assessment, we present some figures of merit (FoMs) able to summarize the typical SPAD performance (i.e., photon detection efficiency, dark counting rate, afterpulsing probability, hold-off time, and timing jitter) and to identify a proper metric for SPAD comparisons, when used either as single-pixel detectors or in imaging arrays. The ultimate goal is not to define a ranking list of best-in-class detectors, but to quantitatively help the end-user to state the overall performance of different SPADs in either photon-counting, timing, or imaging applications. We review many CMOS SPADs from different research groups and companies, we compute the proposed FoMs for all them and, eventually, we provide an insight on present CMOS SPAD technologies and future trends

    Single-Photon Avalanche Diodes in a 0.16 μm BCD Technology With Sharp Timing Response and Red-Enhanced Sensitivity

    Get PDF
    CMOS single-photon avalanche diodes (SPADs) have recently become an emerging imaging technology for applications requiring high sensitivity and high frame-rate in the visible and near-infrared range. However, a higher photon detection efficiency (PDE), particularly in the 700-950 nm range, is highly desirable for many growing markets, such as eye-safe three-dimensional imaging (LIDAR). In this paper, we report the design and characterization of SPADs fabricated in a 0.16 mu m BCD (Bipolar-CMOS-DMOS) technology. The overall detection performance is among the best reported in the literature: 1) PDE of 60% at 500 nm wavelength and still 12% at 800 nm; 2) very low dark count rate of < 0.2 cps/mu m(2) (in counts per second per unit area); 3) < 1% afterpulsing probability with 50 ns dead-time; and 4) temporal response with 30 ps full width at half-maximum and less than 50 ps diffusion tail time constant

    Enhanced single-photon time-of-flight 3D ranging

    Get PDF
    We developed a system for acquiring 3D depth-resolved maps by measuring the Time-of-Flight (TOF) of single photons. It is based on a CMOS 32 × 32 array of Single-Photon Avalanche Diodes (SPADs) and 350 ps resolution Time-to-Digital Converters (TDCs) into each pixel, able to provide photon-counting or photon-timing frames every 10 μs. We show how such a system can be used to scan large scenes in just hundreds of milliseconds. Moreover, we show how to exploit TDC unwarping and refolding for improving signal-to-noise ratio and extending the full-scale depth range. Additionally, we merged 2D and 3D information in a single image, for easing object recognition and tracking

    Fluorescence lifetime biosensing with DNA microarrays and a CMOS-SPAD imager

    Get PDF
    Fluorescence lifetime of dye molecules is a sensitive reporter on local microenvironment which is generally independent of fluorophores concentration and can be used as a means of discrimination between molecules with spectrally overlapping emission. It is therefore a potentially powerful multiplexed detection modality in biosensing but requires extremely low light level operation typical of biological analyte concentrations, long data acquisition periods and on-chip processing capability to realize these advantages. We report here fluorescence lifetime data obtained using a CMOS-SPAD imager in conjunction with DNA microarrays and TIRF excitation geometry. This enables acquisition of single photon arrival time histograms for a 320 pixel FLIM map within less than 26 seconds exposure time. From this, we resolve distinct lifetime signatures corresponding to dye-labelled HCV and quantum-dot-labelled HCMV nucleic acid targets at concentrations as low as 10 nM

    GPU acceleration of time-domain fluorescence lifetime imaging

    Get PDF
    Fluorescence lifetime imaging microscopy (FLIM) plays a significant role in biological sciences, chemistry, and medical research. We propose a Graphic Processing Units (GPUs) based FLIM analysis tool suitable for high-speed and flexible time-domain FLIM applications. With a large number of parallel processors, GPUs can significantly speed up lifetime calculations compared to CPU-OpenMP (parallel computing with multiple CPU cores) based analysis. We demonstrate how to implement and optimize FLIM algorithms on GPUs for both iterative and non-iterative FLIM analysis algorithms. The implemented algorithms have been tested on both synthesized and experimental FLIM data. The results show that at the same precision the GPU analysis can be up to 24-fold faster than its CPU-OpenMP counterpart. This means that even for high precision but time-consuming iterative FLIM algorithms, GPUs enable fast or even real-time analysis
    corecore