60 research outputs found

    Design and implementation of 4 bit binary weighted current steering DAC

    Get PDF
    A compact current-mode Digital-to-Analog converter (DAC) suitable for biomedical application is repesented in this paper .The designed DAC is binary weighted in 180nm CMOS technology with 1.8V supply voltage. In this implementation, authors have focused on calculaton of Non linearity error say INL and DNL for 4 bit DAC having various type of switches: NMOS, PMOS and Transmission Gate. The implemented DAC uses lower area and power compared to unary architecture due to absence of digital decoders. The desired value of Integrated non linearity (INL) and Differential non linearity (DNL) for DAC for are within a range of +0.5LSB. Result obtained in this works for INL and DNL for the case DAC using Transmission Gate is +0.34LSB and +0.38 LSB respectively with 22mW power dissipation

    Differential temperature sensors: Review of applications in the test and characterization of circuits, usage and design methodology

    Get PDF
    Differential temperature sensors can be placed in integrated circuits to extract a signature ofthe power dissipated by the adjacent circuit blocks built in the same silicon die. This review paper firstdiscusses the singularity that differential temperature sensors provide with respect to other sensortopologies, with circuit monitoring being their main application. The paper focuses on the monitoringof radio-frequency analog circuits. The strategies to extract the power signature of the monitoredcircuit are reviewed, and a list of application examples in the domain of test and characterizationis provided. As a practical example, we elaborate the design methodology to conceive, step bystep, a differential temperature sensor to monitor the aging degradation in a class-A linear poweramplifier working in the 2.4 GHz Industrial Scientific Medical—ISM—band. It is discussed how,for this particular application, a sensor with a temperature resolution of 0.02 K and a high dynamicrange is required. A circuit solution for this objective is proposed, as well as recommendations for thedimensions and location of the devices that form the temperature sensor. The paper concludes with adescription of a simple procedure to monitor time variability.Postprint (published version

    An Ultra Low Power Digital to Analog Converter Optimized for Small Format LCD Applications

    Get PDF
    Liquid crystal displays (LCDs) for mobile applications present a unique design challenge. These small format displays can be found primarily in cell phones and PDAs which are devices that have particularly stringent power requirements. At the same time, the displays are increasing in resolution with every generation. This is creating demand for new LCD display technologies. The predominant amorphous thin film transistor technology is no longer feasible in the new high resolution small format screens due to the fact that the displays require too many connections to the driver and the aperture ratios do not allow high density displays. New technologies such as low temperature polysilicon (LTPS) displays continue to shrink in size and increase in resolution. LTPS technology enables the display manufacturer to create relatively high quality transistors on the glass. This allows for a display architecture which integrates the gate driver on the glass. Newer LTPS LCDs also enable a high level of multiplexing the sources lines on the glass which allows for a much simpler connection to the display driver chip. The electronic drivers for these display applications must adhere to strict power and area budgets. This work describes a low-power, area efficient, scalable, digital-to-analog conversion (DAC) integrated circuit architecture optimized for driving small format LCDs. The display driver is based on a twelve channel, 9-bit DAC driver. This architecture, suitable for % VGA resolution displays, exhibited a 2 MSPS conversion rate, less than 300 pW power dissipation per channel using a 5 V supply, and a die area of 0.042 mm per DAC. A new performance standard is set for DAC display drivers in joules per bit areal density

    Concepts for smart AD and DA converters

    Get PDF
    This thesis studies the `smart' concept for application to analog-to-digital and digital-to-analog converters. The smart concept aims at improving performance - in a wide sense - of AD/DA converters by adding on-chip intelligence to extract imperfections and to correct for them. As the smart concept can correct for certain imperfections, it can also enable the use of more efficient architectures, thus yielding an additional performance boost. Chapter 2 studies trends and expectations in converter design with respect to applications, circuit design and technology evolution. Problems and opportunities are identfied, and an overview of performance criteria is given. Chapter 3 introduces the smart concept that takes advantage of the expected opportunities (described in chapter 2) in order to solve the anticipated problems. Chapter 4 applies the smart concept to digital-to-analog converters. In the discussed example, the concept is applied to reduce the area of the analog core of a current-steering DAC. It is shown that a sub-binary variable-radix approach reduces the area of the current-source elements substantially (10x compared to state-of-the-art), while maintaining accuracy by a self-measurement and digital pre-correction scheme. Chapter 5 describes the chip implementation of the sub-binary variable-radix DAC and discusses the experimental results. The results confirm that the sub-binary variable-radix design can achieve the smallest published current-source-array area for the given accuracy (12bit). Chapter 6 applies the smart concept to analog-to-digital converters, with as main goal the improvement of the overall performance in terms of a widely used figure-of-merit. Open-loop circuitry and time interleaving are shown to be key to achieve high-speed low-power solutions. It is suggested to apply a smart approach to reduce the effect of the imperfections, unintentionally caused by these key factors. On high-level, a global picture of the smart solution is proposed that can solve the problems while still maintaining power-efficiency. Chapter 7 deals with the design of a 500MSps open-loop track-and-hold circuit. This circuit is used as a test case to demonstrate the proposed smart approaches. Experimental results are presented and compared against prior art. Though there are several limitations in the design and the measurement setup, the measured performance is comparable to existing state-of-the-art. Chapter 8 introduces the first calibration method that counteracts the accuracy issues of the open-loop track-and-hold. A description of the method is given, and the implementation of the detection algorithm and correction circuitry is discussed. The chapter concludes with experimental measurement results. Chapter 9 introduces the second calibration method that targets the accuracy issues of time-interleaved circuits, in this case a 2-channel version of the implemented track-and-hold. The detection method, processing algorithm and correction circuitry are analyzed and their implementation is explained. Experimental results verify the usefulness of the method

    Dynamic calibration of current-steering DAC

    Get PDF
    The demand for high-speed communication systems has dramatically increased during the last decades. Working as an interface between the digital and analog world, Digital-to-Analog converters (DACs) are becoming more and more important because they are a key part which limits the accuracy and speed of an overall system. Consequently, the requirements for high-speed and high-accuracy DACs are increasingly demanding. It is well recognized that dynamic performance of the DACs degrades dramatically with increasing input signal frequencies and update rates. The dynamic performance is often characterized by the spurious free dynamic range (SFDR). The SFDR is determined by the spectral harmonics, which are attributable to system nonlinearities.;A new calibration approach is presented in this thesis that compensates for the dynamic errors in performance. In this approach, the nonlinear components of the input dependent and previous input code dependent errors are characterized, and correction codes that can be used to calibrate the DAC for these nonlinearities are stored in a two-dimensional error look-up table. A series of pulses is generated at run time by addressing the error look-up table with the most significant bits of the Boolean input and by using the corresponding output to drive a calibration DAC whose output is summed with the original DAC output. The approach is applied at both the behavioral level and the circuit level in current-steering DAC.;The validity of this approach is verified by simulation. These simulations show that the dynamic nonlinearities can be dramatically reduced with this calibration scheme. The simulation results also show that this calibration approach is robust to errors in both the width and height of calibration pulses.;Experimental measurement results are also provided for a special case of this dynamic calibration algorithm that show that the dynamic performance can be improved through dynamic calibration, provided the mean error values in the table are close to their real values

    High-speed Design Of High-resolution Dacs

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2009Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2009Bu çalışmada, yüksek çözünürlüklü akım yönlendirmeli sayısal-analog dönüştürücülerin (SAD) hızlı tasarımını sağlayan yöntemler incelenmekte ve yeni yaklaşımlar önerilmektedir. Veri dönüştürücüler analog ve sayısal dünyalar arasında bir köprü oluşturdukları için hızlı ve verimli bir şekilde gerçekleştirilmeleri yüksek derecede arzu edilmektedir. Yüksek hızlı (birkaç 100MHz) ve yüksek çözünürlüklü (10 bitten fazla) SAD için artan rağbet, akım yönlendirmeli SADların kullanımını zorunlu kılmaktadır. Yüksek performanslı akım yönlendirmeli SADların tasarımında ve gerçekleştirmesinde kesimleme (segmentation) yöntemi kullanılmaktadır. Bu yöntem, yüksek hız ve yüksek çözünürlük gerektiren uygulamaların çoğunda avantajlı olmasına rağmen uzun süreli tasarım zamanı, karmaşıklık ve yüksek maliyet yüzünden değer kaybetmektedir. Böylece, bazı uygulamalar için zaman ve maliyet açısından bu yöntemin kullanılması hızlı ve verimli olmayabilir. Bu problemlerin üstesinden gelmek için yüksek çözünürlüklü SADların yüksek hızlı tasarımını sağlayan hızlı ve verimli yöntemler dikkate alınmaktadır. Uygun bir tasarım yöntemi ve yeni bir yapı önerilmektedir. Akım yönlendirmeli SADlar gibi karmaşık karma yapılı sistemlerin tasarımı için davranışsal modelin oluşturulması zorunlu olmaktadır. Bu amaçla gerçekleştirilen modellerin çoğu sistemin davranışı hakkında istenilen eksiksiz manzarayı vermemektedir. Bu yüzden, transistor seviyesindeki tasarıma geçmeden önce, tasarımı hızlandırabilen ve sistemin davranışını doğru bir şekilde yansıtabilen modeller geliştirilmektedir. SIMULINK® kullanılarak bir davranışsal model kurulmakta ve modelin performansı benzetimlerle sınanmaktadır. Sonuç olarak, uygulanan yöntemin verimliliğini ve davranışsal modelin doğruluğunu sınamak için 0.35µm CMOS proses teknolojisi için tasarlanan bir 12 bitlik melez akım yönlendirmeli SAD kullanılmaktadır. Yapı bloklarında yapılan iyileştirmeler ve kullanılan farklı yöntemler, gerçekleştirilen SAD’ın serimindeki ilgili kısımlarda yer almaktadırlar. CADENCE Geleneksel Tümleşik Devre Tasarım Araçları kullanılarak serim sonrası benzetimleri yapılmakta ve SAD’ın performans karakteristikleri incelenmektedir.In this thesis, different problems related to the design speed-up of high-resolution current-steering digital-to-analog converters (DAC) are addressed and novel solutions are proposed. Since data converters form the bridge between the analog and digital world their efficient implementation is highly desirable. The increase in demand for high-speed (several 100MHz) and high-resolution (higher than 10-bit) DAC, forces the use of current-steering DACs. Segmentation method is used for the design and the implementation of high performance current-steering DACs. Although this methodology is advantageous in most of the applications requiring high-speed and high-resolution, it suffers from the prolonged design time, complexity and high cost. Thus, the use of this methodology for some applications is not efficient concerning the time and the cost. To overcome these problems efficient methodologies for the high-speed design of high-resolution DACs are considered. A proper design methodology and a novel architecture are introduced. Behavioral modeling is necessary for the design of complex mixed-mode systems like current-steering DACs. Most of the models constructed can not give a complete view of the system’s behavior. For this reason, models that speed up the design and reflect accurately the behavior of the system prior to transistor level implementation are developed. A SIMULINK® based behavioral model is developed and verified through simulations. To conclude, the efficiency of the applied methodology and the accuracy of the behavioral model are validated through the implementation of a 12-bit hybrid current-steering DAC in a 0.35µm CMOS process technology. The improvements in the building blocks and the different approaches used are reflected in the respective parts of the layout of the implemented DAC. Post-layout simulations are obtained using CADENCE Custom IC Design Tools and the performance metrics of the DAC are investigated.DoktoraPh

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Low Power CMOS Interface Circuitry for Sensors and Actuators

    Get PDF

    Power and spectrally efficient integrated high-speed LED drivers for visible light communication

    Get PDF
    Recent trends in mobile broadband indicates that the available radio frequency (RF) spectrum will not be enough to support the data requirements of the immediate future. Visible light communication, which uses visible spectrum to transmit wirelessly could be a potential solution to the RF ’Spectrum Crunch’. Thus there is growing interest all over the world in this domain with support from both academia and industry. Visible light communication( VLC) systems make use of light emitting diodes (LEDs), which are semiconductor light sources to transmit information. A number of demonstrators at different data capacity and link distances has been reported in this area. One of the key problems holding this technology from taking off is the unavailability of power efficient, miniature LED drive schemes. Reported demonstrators, mostly using either off the shelf components or arbitrary waveform generators (AWGs) to drive the LEDs have only started to address this problem by adopting integrated drivers designed for driving lighting installations for communications. The voltage regulator based drive schemes provide high power efficiency (> 90 %) but it is difficult to realise the fast switching required to achieve the Mbps or Gbps data rates needed for modern wireless communication devices. In this work, we are exploiting CMOS technology to realise an integrated LED driver for VLC. Instead of using conventional drive schemes (digital to analogue converter (DAC) + power amplifier or voltage regulators), we realised a current steering DAC based LED driver operating at high currents and sampling rates whilst maintaining power efficiency. Compared to a commercial AWG or discrete LED driver, circuit realised utilisng complementary metal oxide semiconductor (CMOS) technology has resulted in area reduction (29mm2). We realised for the first time a multi-channel CMOS LED driver capable of operating up to a 500 MHz sample rate at an output current of 255 mA per channel and >70% power efficiency. We were able to demonstrate the flexibility of the driver by employing it to realise VLC links using micro LEDs and commercial LEDs. Data rates up to 1 Gbps were achieved using this system employing a multiple input, multiple output (MIMO) scheme. We also demonstrated the wavelength division multiplexing ability of the driver using a red/green/blue commercial LED. The first integrated digital to light converter (DLC), where depending on the input code, a proportional number of LEDs are turned ON, realising a data converter in the optical domain, is also an output from this research. In addition, we propose a differential optical drive scheme where two output branches of a current DAC are used to drive two LEDs achieving higher link performance and power efficiency compared to single LED drive
    corecore