3 research outputs found

    A Low-Power Wireless Multichannel Microsystem for Reliable Neural Recording.

    Full text link
    This thesis reports on the development of a reliable, single-chip, multichannel wireless biotelemetry microsystem intended for extracellular neural recording from awake, mobile, and small animal models. The inherently conflicting requirements of low power and reliability are addressed in the proposed microsystem at architectural and circuit levels. Through employing the preliminary microsystems in various in-vivo experiments, the system requirements for reliable neural recording are identified and addressed at architectural level through the analytical tool: signal path co-optimization. The 2.85mm×3.84mm, mixed-signal ASIC integrates a low-noise front-end, programmable digital controller, an RF modulator, and an RF power amplifier (PA) at the ISM band of 433MHz on a single-chip; and is fabricated using a 0.5µm double-poly triple-metal n-well standard CMOS process. The proposed microsystem, incorporating the ASIC, is a 9-channel (8-neural, 1-audio) user programmable reliable wireless neural telemetry microsystem with a weight of 2.2g (including two 1.5V batteries) and size of 2.2×1.1×0.5cm3. The electrical characteristics of this microsystem are extensively characterized via benchtop tests. The transmitter consumes 5mW and has a measured total input referred voltage noise of 4.74µVrms, 6.47µVrms, and 8.27µVrms at transmission distances of 3m, 10m, and 20m, respectively. The measured inter-channel crosstalk is less than 3.5% and battery life is about an hour. To compare the wireless neural telemetry systems, a figure of merit (FoM) is defined as the reciprocal of the power spent on broadcasting one channel over one meter distance. The proposed microsystem’s FoM is an order of magnitude larger compared to all other research and commercial systems. The proposed biotelemetry system has been successfully used in two in-vivo neural recording experiments: i) from a freely roaming South-American cockroach, and ii) from an awake and mobile rat.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91542/1/aborna_1.pd

    READ-OUT CIRCUITS FOR INTEGRATED SURFACE ACOUSTIC WAVE SENSORS

    Get PDF
    Readout modules for vapor and liquid phase SAW sensors fabricated on piezoelectric films are typically configured as single or dual delay line oscillator loops. Mass loading of the sorbent film realized on the SAW device is detected as a frequency shift which is read externally via a frequency counter. However, this approach is not directly applicable in the development of a monolithically integrated autonomous sensor system suitable for wearable sensor tags and other field applications. In this work we have developed a data measurement topology suitable for monolithically integrated SAW sensors on CMOS chips, a technology that is not fully developed and will significantly increase Si-CMOS functionality. This readout technology achieves closed loop conversion of the SAW frequency response to a well-defined output voltage accurately tracking sensor behavior in real time. The topology is appropriate for thin film, low loss interdigitated (IDT) SAW devices used as mass loading sensors, such as those reported in [1] and [2]. The proposed closed loop system is controlled by a finite state machine (FSM) which forces the system output to oscillate within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We also use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The output voltage range varies with changes in SAW center frequency, thus tracking mass sensing events in real time. This architecture precludes mode jumping issues found in designs incorporating the SAW delay line or the resonator in the feedback loop of an amplifier. It was demonstrated that the system can be adapted to alternate SAW center frequencies and group delays by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags

    CMOS SPAD-based image sensor for single photon counting and time of flight imaging

    Get PDF
    The facility to capture the arrival of a single photon, is the fundamental limit to the detection of quantised electromagnetic radiation. An image sensor capable of capturing a picture with this ultimate optical and temporal precision is the pinnacle of photo-sensing. The creation of high spatial resolution, single photon sensitive, and time-resolved image sensors in complementary metal oxide semiconductor (CMOS) technology offers numerous benefits in a wide field of applications. These CMOS devices will be suitable to replace high sensitivity charge-coupled device (CCD) technology (electron-multiplied or electron bombarded) with significantly lower cost and comparable performance in low light or high speed scenarios. For example, with temporal resolution in the order of nano and picoseconds, detailed three-dimensional (3D) pictures can be formed by measuring the time of flight (TOF) of a light pulse. High frame rate imaging of single photons can yield new capabilities in super-resolution microscopy. Also, the imaging of quantum effects such as the entanglement of photons may be realised. The goal of this research project is the development of such an image sensor by exploiting single photon avalanche diodes (SPAD) in advanced imaging-specific 130nm front side illuminated (FSI) CMOS technology. SPADs have three key combined advantages over other imaging technologies: single photon sensitivity, picosecond temporal resolution and the facility to be integrated in standard CMOS technology. Analogue techniques are employed to create an efficient and compact imager that is scalable to mega-pixel arrays. A SPAD-based image sensor is described with 320 by 240 pixels at a pitch of 8μm and an optical efficiency or fill-factor of 26.8%. Each pixel comprises a SPAD with a hybrid analogue counting and memory circuit that makes novel use of a low-power charge transfer amplifier. Global shutter single photon counting images are captured. These exhibit photon shot noise limited statistics with unprecedented low input-referred noise at an equivalent of 0.06 electrons. The CMOS image sensor (CIS) trends of shrinking pixels, increasing array sizes, decreasing read noise, fast readout and oversampled image formation are projected towards the formation of binary single photon imagers or quanta image sensors (QIS). In a binary digital image capture mode, the image sensor offers a look-ahead to the properties and performance of future QISs with 20,000 binary frames per second readout with a bit error rate of 1.7 x 10-3. The bit density, or cumulative binary intensity, against exposure performance of this image sensor is in the shape of the famous Hurter and Driffield densitometry curves of photographic film. Oversampled time-gated binary image capture is demonstrated, capturing 3D TOF images with 3.8cm precision in a 60cm range
    corecore