43 research outputs found

    Concurrent Multi-Band Envelope Tracking Power Amplifiers for Emerging Wireless Communications

    Get PDF
    Emerging wireless communication is shifting toward data-centric broadband services, resulting in employment of sophisticated and spectrum efficient modulation and access techniques. This yields communication signals with large peak-to-average power ratios (PAPR) and stringent linearity requirements. For example, future wireless communication standard, such as long term evolution advanced (LTE-A) require adoption of carrier aggregation techniques to improve their effective modulation bandwidth. The carrier aggregation technique for LTE-A incorporates multiple carriers over a wide frequency range to create a wider bandwidth of up to 100MHz. This will require future power amplifiers (PAs) and transmitters to efficiently amplify concurrent multi-band signals with large PAPR, while maintaining good linearity. Different back-off efficiency enhancement techniques are available, such as envelope tracking (ET) and Doherty. ET has gained a lot of attention recently as it can be applied to both base station and mobile transmitters. Unfortunately, few publications have investigated concurrent multi-band amplification using ET PAs, mainly due to the limited bandwidth of the envelope amplifier. In this thesis, a novel approach to enable concurrent amplification of multi-band signals using a single ET PA will be presented. This thesis begins by studying the sources of nonlinearities in single-band and dual-band PAs. Based on the analysis, a design methodology is proposed to reduce the sources of memory effects in single-band and dual-band PAs from the circuit design stage and improve their linearizability. Using the proposed design methodology, a 45W GaN PA was designed. The PA was linearized using easy to implement, memoryless digital pre-distortion (DPD) with 8 and 28 coefficients when driven with single-band and dual-band signals, respectively. This analysis and design methodology will enable the design of PAs with reduced memory effects, which can be linearized using simple, power efficient linearization techniques, such as lookup table or memoryless polynomial DPD. Note that the power dissipation of the linearization engine becomes crucial as we move toward smaller base station cells, such as femto- and pico-cells, where complicated DPD models cannot be implemented due to their significant power overhead. This analysis is also very important when implementing a multi-band ET PA system, where the sources of memory effects in the PA itself are minimized through the proposed design methodology. Next, the principle of concurrent dual-band ET operation using the low frequency component (LFC) of the envelope of the dual-band signal is presented. The proposed dual-band ET PA modulates the drain voltage of the PA using the LFC of the envelope of the dual-band signal. This will enable concurrent dual-band operation of the ET PA without posing extra bandwidth requirements on the envelope amplifier. A detailed efficiency and linearity analysis of the dual-band ET PA is also presented. Furthermore, a new dual-band DPD model with supply dependency is proposed in this thesis, capable of capturing and compensating for the sources of distortion in the dual-band ET PA. To the best of our knowledge, concurrent dual-band operation of ET PAs using the LFC of the envelope of the dual-band signal is presented for the first time in the literature. The proposed dual-band ET operation is validated using the measurement results of two GaN ET PA prototypes. Lastly, the principle of concurrent dual-band ET operation is extended to multi-band signals using the LFC of the envelope of the multi-band signal. The proposed multi-band ET operation is validated using the measurement results of a tri-band ET PA. To the best of our knowledge, this is the first reported tri-band ET PA in literature. The tri-band ET PA is linearized using a new tri-band DPD model with supply dependency

    Reconfigurable Signal Processing and DSP Hardware Generator for 5G Transmitters

    Get PDF
    To impose the reconfigurability and reusability of digital circuits for millimeterwave transmitter architectures, high-speed digital signal processing architectures are explored. The digital front-end of these next-generation transmitters can be implemented up to the maximum operating frequency to meet the requirements of the 5G NR FR2 frequency bands. This paper presents an efficient implementation of a reconfigurable digital signal processor (DSP) that contains programmable multistage multirate filters, operable up to 4 GHz, and a flexible generator for polar, outphasing, and multilevel outphasing modulation. The system achieves an excellent ACLR of 42 dB and EVM degradation of 1.61% with a 7-bit phase signal at a sampling frequency of 4 GHz for outphasing modulation. Digital synthesis of the circuit in a 22 nm FDSOI process results in a core area of 0.12 mm2and an estimated power consumption of 142 mW for a 200 MHz bandwidth 5G NR baseband signal.acceptedVersionPeer reviewe

    Broadband Power Amplifier Design with High Power, High Efficiency and Large Back-off Range

    Get PDF
    As modern communication system technology develops, the demand for devices with smaller size, higher efficiency, and larger bandwidth has increased dramatically. To achieve this purpose, a novel architecture of load modulated balanced amplifier (LMBA) with a unique load-modulation characteristic different from any existing LMBAs and Doherty power amplifiers (DPAs) was presented, which is named as Pseudo-Doherty LMBA (PD-LMBA). Based on a special combination of control amplifier (carrier) and balanced amplifier (peaking) together with proper phase and amplitude controls, an optimal load-modulation behavior can be achieved for PD-LMBA leading to maximized efficiency over extended power back-off range. More importantly, the efficiency optimization can be achieved with only a static setting of phase offset at a given frequency, which greatly simplifies the complexity for phase control. Furthermore, the co-operations of the carrier and peaking amplifiers in PD-LMBA are fully de-coupled, thus lifting the fundamental bandwidth barrier imposed on Doherty-based active load modulation. However, since PD-LMBA has CA over-driving concerns, a new load-modulated power amplifier (PA) architecture, Asymmetric Load-Modulated Balanced Amplifier (ALMBA), is proposed based on PD-LMBA. And a subsequent improved type-continuous mode Hybrid Asymmetric Load Modulation Balanced Amplifier (H-ALMBA) has been developed. The two sub-amplifiers (BA1 and BA2) of the balanced topology in an LMBA are set as peaking amplifiers with different thresholds when cooperating with the control amplifier (CA) as the carrier, forming a hybrid load modulation behavior between Doherty and ALMBA. Compared to standard LMBA, the proposed H-ALMBA has a three-way load modulation with CA, BA1 and BA2 through proper amplitude control and phase alignment. Thus, this new mode offers extended power back-off range and enhanced back-off efficiency without suffering from difficulty and complexity in wideband design as imposed on three-way Doherty PAs. Based on comprehensive theoretical derivation and analysis, the proposed H-ALMBA is designed and implemented using commercial GaN transistors and wideband quadrature couplers. Moreover, the continuous-mode matching is applied to the carrier amplifier achieving a maximized wideband efficiency at power back-off. This is the first time that continuous mode and ALMBA have been used in combination, and very satisfactory results have been achieved, exhibiting the highest 10-dB output power back-off (OBO) drain efficiency (DE) ever reported for wideband load-modulation PAs. The developed prototype experimentally demonstrates wide bandwidth from 0.55-2.2 GHz. The measurement exhibits an efficiency of 63-82% at peak output power, 51-62% for 5-dB OBO, and 50-66% for 10-dB OBO within the design bandwidth. When stimulated by a 20-MHz long term evolution (LTE) signal with 10.5-dB peak to average power ratio (PAPR), a 50-55% average efficiency is measured over the entire bandwidth at an average output power around 33 dBm

    Supply modulated GaN HEMT power amplifiers - From transistor to system

    Get PDF
    Power amplifiers (PAs) for mobile communication applications are required to fulfil stringent requirements concerning linearity while keeping a high efficiency over a wide power range and bandwidth. To achieve this, a number of advanced PA topologies have been developed, mostly based on either load modulation, such as Doherty PAs or load modulation balanced PAs, or on supply modulation such as envelope tracking or envelope elimination and restoration. Supply modulation has an advantage over other topologies as the power range of high efficiency can be realised over arbitrary bandwidths, only limited by the bandwidth of the PA. This does, however, come at the cost of a significantly more complicated voltage supply. Instead of a static supply voltage, the PA needs to be provided with one which is rapidly changing, requiring a supply modulator capable of powering the PA while modulating its supply voltage. This thesis investigates a number of challenges in supply modulated power amplifiers, ranging from the transistor itself to circuit design and system level considerations and focusses on power levels up to 10 W and frequencies between 1 GHz and 4 GHz. Transistors, as the centre-piece of a PA, determine how well the PA reacts to a changing supply voltage. In this work, the traits that make GaN HEMTs suitable for supply modulated PAs were investigated, and gain variation with changing supply voltage was established as an important parameter. This gain variation is described in detail and its impacts on PA performance are discussed. By comparing transistors in literature, gain variation has been demonstrated to be a prevalent characteristic in transistors with GaN HEMTs showing a very wide range of gain variation. Using a small-signal model based on measurements, the voltage dependent behaviour of the feedback capacitance CGD is, for the first time, identified as the origin of small-signal gain variation. This is traced down to the gate field plate which is commonly used to combat surface trapping effects in GaN HEMTs. With this in mind, two different ways of changing the transistor geometry to reduce the impact of gain variation and thus optimise the transistor for operation in supply modulated PAs are discussed and demonstrated using a 250 nm GaN HEMT. As a result of the non-linearity of the feedback and gate-source capacitances, the input impedance of GaN HEMTs changes with supply voltage and drive power. This prevents the transistor from being matched at all supply voltages and input powers and introduces phase distortion. Using simulation and measurement, the impact of input impedance on linearity and efficiency of supply modulated power amplifiers is demonstrated on a 2.9 GHz 10 W PA. Careful selection of the input impedance allows improvement of AM/PM distortion of a supply modulated PA with little cost in terms of AM/AM and PAE. I Supply modulators have a significant impact on efficiency and linearity of the ET system. One supply modulator topology with the potential to generate a supply voltage with a high modulation bandwidth is the RF modulator in which the input DC voltage is turned into an RF signal and rectified, resulting in an output voltage which depends on the excitation of the PA. While PAs are well understood in every detail, there are gaps in the understanding of RF rectifiers. Using active load-pull/source-pull measurements, intrinsic gate and drain waveforms of a GaN HEMT operated as a rectifier are demonstrated for the first time. This allows in-detail evaluation of the impact of the gate termination in self-synchronous rectifiers. It also allows detailed analysis of the loss mechanisms in rectifiers and formulation of the required impedances to realise efficient self-synchronous operation, resulting in efficiencies exceeding 90% over wide power ranges. Using waveform engineering, a new type of RF modulator, with potentially very high bandwidths, based on even harmonic generation/injection is proposed. The necessary operating conditions of the rectifier part of the modulator are emulated using an active load-pull/source-pull system to successfully demonstrate that the rectifier behaves as predicted. Using a simple demonstrator, preliminary measurements were conducted and the RF modulator was shown to work, reaching efficiencies up to 78%. As PA and supply modulator are combined, they present impedances to each other. These impedances have a significant impact on the behaviour of both sub-systems. A simple way to characterise both the impedance presented to the PA by the modulator and the impedance presented to the modulator by the PA is described. Using a state-of-the-art modulator, these impedances are measured, the modulator impedance is demonstrated to be close to the simulated value. These measurements also demonstrate that the impedances change significantly with the operating conditions

    Programmable rate modem utilizing digital signal processing techniques

    Get PDF
    The engineering development study to follow was written to address the need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulation. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. Here design tradeoffs in each portion of the modulator and demodulator subsystem are outlined, and viable circuit approaches which are easily repeatable, have low implementation losses and have low production costs are identified. The research involved for this study was divided into nine technical papers, each addressing a significant region of concern in a variable rate modem design. Trivial portions and basic support logic designs surrounding the nine major modem blocks were omitted. In brief, the nine topic areas were: (1) Transmit Data Filtering; (2) Transmit Clock Generation; (3) Carrier Synthesizer; (4) Receive AGC; (5) Receive Data Filtering; (6) RF Oscillator Phase Noise; (7) Receive Carrier Selectivity; (8) Carrier Recovery; and (9) Timing Recovery

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them

    Planning assistance for the 30/20 GHz program, volume 1

    Get PDF
    Functional requirements for the 30/20 GHz communication system, planning assistance for the 30/20 GHz program, and a review of specified conceptual designs and recommendations are provided
    corecore