4 research outputs found

    Optimizing AI at the Edge: from network topology design to MCU deployment

    Get PDF
    The first topic analyzed in the thesis will be Neural Architecture Search (NAS). I will focus on two different tools that I developed, one to optimize the architecture of Temporal Convolutional Networks (TCNs), a convolutional model for time-series processing that has recently emerged, and one to optimize the data precision of tensors inside CNNs. The first NAS proposed explicitly targets the optimization of the most peculiar architectural parameters of TCNs, namely dilation, receptive field, and the number of features in each layer. Note that this is the first NAS that explicitly targets these networks. The second NAS proposed instead focuses on finding the most efficient data format for a target CNN, with the granularity of the layer filter. Note that applying these two NASes in sequence allows an "application designer" to minimize the structure of the neural network employed, minimizing the number of operations or the memory usage of the network. After that, the second topic described is the optimization of neural network deployment on edge devices. Importantly, exploiting edge platforms' scarce resources is critical for NN efficient execution on MCUs. To do so, I will introduce DORY (Deployment Oriented to memoRY) -- an automatic tool to deploy CNNs on low-cost MCUs. DORY, in different steps, can manage different levels of memory inside the MCU automatically, offload the computation workload (i.e., the different layers of a neural network) to dedicated hardware accelerators, and automatically generates ANSI C code that orchestrates off- and on-chip transfers with the computation phases. On top of this, I will introduce two optimized computation libraries that DORY can exploit to deploy TCNs and Transformers on edge efficiently. I conclude the thesis with two different applications on bio-signal analysis, i.e., heart rate tracking and sEMG-based gesture recognition

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    ESARDA 39th Annual Meeting: 2017 Symposium

    Get PDF
    The 39th ESARDA symposium on Safeguards and Nuclear Non-Proliferation was held in Düsseldorf, Germany from 16-18 May, 2017. The Symposium has been preceded by meetings of the ESARDA Working Groups on 15 May 2017. The event has once again been an opportunity for research organisations, safeguards authorities and nuclear plant operators to exchange information on new aspects of international safeguards and non-proliferation, as well as recent developments in nuclear safeguards and non-proliferation related research activities and their implications for the safeguards community.JRC.G.II.7-Nuclear securit
    corecore