139 research outputs found

    GaN vs. Si for Class D Audio Applications

    Get PDF
    The demands and applications of modern power electronics are quickly moving past the maximum performance capabilities of Silicon devices. As the processing of Wide Bandgap (WBG) materials matures and the commercial availability of WBG devices grows, circuit designers are exploring many applications to exploit the performance benefits over traditional Silicon devices. This work examines the under-explored application of GaN-based Class D audio by providing a side-by-side comparison of enhancement-mode GaN devices with currently available Silicon MOSFETs. It is suggested that GaN in Class D audio will allow for lower heat radiation, smaller circuit footprints, and longer battery life as compared to Si MOSFETs with a negligible trade-off for quality of sound

    Low Power High Efficiency Integrated Class-D Amplifier Circuits for Mobile Devices

    Get PDF
    The consumer’s demand for state-of-the-art multimedia devices such as smart phones and tablet computers has forced manufacturers to provide more system features to compete for a larger portion of the market share. The added features increase the power consumption and heat dissipation of integrated circuits, depleting the battery charge faster. Therefore, low-power high-efficiency circuits, such as the class-D audio amplifier, are needed to reduce heat dissipation and extend battery life in mobile devices. This dissertation focuses on new design techniques to create high performance class-D audio amplifiers that have low power consumption and occupy less space. The first part of this dissertation introduces the research motivation and fundamentals of audio amplification. The loudspeaker’s operation and main audio performance metrics are examined to explain the limitations in the amplification process. Moreover, the operating principle and design procedure of the main class-D amplifier architectures are reviewed to provide the performance tradeoffs involved. The second part of this dissertation presents two new circuit designs to improve the audio performance, power consumption, and efficiency of standard class-D audio amplifiers. The first work proposes a feed-forward power-supply noise cancellation technique for single-ended class-D amplifier architectures to improve the power-supply rejection ratio across the entire audio frequency range. The design methodology, implementation, and tradeoffs of the proposed technique are clearly delineated to demonstrate its simplicity and effectiveness. The second work introduces a new class-D output stage design for piezoelectric speakers. The proposed design uses stacked-cascode thick-oxide CMOS transistors at the output stage that makes possible to handle high voltages in a low voltage standard CMOS technology. The design tradeoffs in efficiency, linearity, and electromagnetic interference are discussed. Finally, the open problems in audio amplification for mobile devices are discussed to delineate the possible future work to improve the performance of class-D amplifiers. For all the presented works, proof-of-concept prototypes are fabricated, and the measured results are used to verify the correct operation of the proposed solutions

    Techniques for signal to noise ratio adaptation in infared optical wireless for optimisation of receiver performance

    Get PDF
    The challenge of creating a new environment of links for wireless infrared and optical local area networks (LANs) is driving new innovations in the design of optical transceivers. This thesis is concerned with a systematic approach to the design of receivers for indoor optical wireless communication. In particular, it is concerned with how to offer bandwidth adjustment capability in a receiver according to the dynamic service quality of the incoming signals. Another part of the discussion of the thesis is how one can properly choose the front-end preamplifier and biasing circuitry for the photodetector. Also, comparison is made between different types of amplifier, and the methods of bandwidth enhancement. The designs of six different techniques of integrating transimpedance amplifiers, with photodetectors to adapt an adjustable bandwidth control receiver are discussed. The proposed topologies provide an adjustable range of bandwidths for different frequency ranges, typically between 52Hz to 115MHz. The composite technique designs were used to incorporate into a system with an automatic gain control to study its effect, on an optical wireless receiver which had bandwidth adjustment and automatic gain adjustment. Theoretical analysis of noise performance for all the designed circuits is also presented. The theory and design of obstacles of indoor optical wireless receiver delivery, in addition to techniques for mitigating these effects, are discussed. This shows that infrared is a viable alternative to ratio for certain applications
    • …
    corecore