28,116 research outputs found

    Pervasive and standalone computing: The perceptual effects of variable multimedia quality.

    Get PDF
    The introduction of multimedia on pervasive and mobile communication devices raises a number of perceptual quality issues, however, limited work has been done examining the 3-way interaction between use of equipment, quality of perception and quality of service. Our work measures levels of informational transfer (objective) and user satisfaction (subjective)when users are presented with multimedia video clips at three different frame rates, using four different display devices, simulating variation in participant mobility. Our results will show that variation in frame-rate does not impact a user’s level of information assimilation, however, does impact a users’ perception of multimedia video ‘quality’. Additionally, increased visual immersion can be used to increase transfer of video information, but can negatively affect the users’ perception of ‘quality’. Finally, we illustrate the significant affect of clip-content on the transfer of video, audio and textual information, placing into doubt the use of purely objective quality definitions when considering multimedia presentations

    Color television study Final report, Nov. 1965 - Mar. 1966

    Get PDF
    Color television camera for transmission from lunar and earth orbits and lunar surfac

    Remote monitoring of biodynamic activity using electric potential sensors

    Get PDF
    Previous work in applying the electric potential sensor to the monitoring of body electrophysiological signals has shown that it is now possible to monitor these signals without needing to make any electrical contact with the body. Conventional electrophysiology makes use of electrodes which are placed in direct electrical contact with the skin. The electric potential sensor requires no cutaneous electrical contact, it operates by sensing the displacement current using a capacitive coupling. When high resolution body electrophysiology is required a strong (capacitive) coupling is used to maximise the collected signal. However, in remote applications where there is typically an air-gap between the body and the sensor only a weak coupling can be achieved. In this paper we demonstrate that the electric potential sensor can be successfully used for the remote sensing and monitoring of bioelectric activity. We show examples of heart-rate measurements taken from a seated subject using sensors mounted in the chair. We also show that it is possible to monitor body movements on the opposite side of a wall to the sensor. These sensing techniques have biomedical applications for non-contact monitoring of electrophysiological conditions and can be applied to passive through-the-wall surveillance systems for security applications

    Characteristics of flight simulator visual systems

    Get PDF
    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality

    Waveguide-Type Head-Mounted Display System for AR Application

    Get PDF
    Currently, a lot of institutes and industries are working on the development of the virtual reality and augmented reality techniques, and these techniques have been recognized as the determination for the direction of the three-dimensional display development in the near future. In this chapter, we mainly discussed the design and application of several wearable head-mounted display (HMD) systems with the waveguide structure using the in- and out-couplers which are fabricated by the diffractive optical elements or holographic volume gratings. Although the structure is simple, the waveguide-type HMDs are very efficient, especially in the practical applications, especially in the augmented reality applications, which make the device light-weighted. In addition, we reviewed the existing major head-mounted display and augmented reality systems

    Fibre imaging bundles for full-field optical coherence tomography

    Get PDF
    An imaging fibre bundle is incorporated into a full-field imaging OCT system, with the aim of eliminating the mechanical scanning currently required at the probe tip in endoscopic systems. Each fibre within the imaging bundle addresses a Fizeau interferometer formed between the bundle end and the sample, a configuration which ensures down lead insensitivity of the probe fibres, preventing variations in sensitivity due to polarization changes in the many thousand constituent fibres. The technique allows acquisition of information across a planar region with single-shot measurement, in the form of a 2D image detected using a digital CCD camera. Depth scanning components are now confined within a processing interferometer external to the completely passive endoscope probe. The technique has been evaluated in our laboratory for test samples, and images acquired using the bundle-based system are presented. Data are displayed either as en-face scans, parallel to the sample surface, or as slices through the depth of the sample, with a spatial resolution of about 30 ï ­m. The minimum detectable reflectivity at present is estimated to be about 10-3, which is satisfactory for many inorganic samples. Methods of improving the signal-to- noise ratio for imaging of lower reflectivity samples are discuss
    corecore