41 research outputs found

    Architectural Alternatives to Implement High-Performance Delta-Sigma Modulators

    Get PDF
    RÉSUMÉ Le besoin d’appareils portatifs, de téléphones intelligents et de systèmes microélectroniques implantables médicaux s’accroît remarquablement. Cependant, l’optimisation de l’alimentation de tous ces appareils électroniques portables est l’un des principaux défis en raison du manque de piles à grande capacité utilisées pour les alimenter. C’est un fait bien établi que le convertisseur analogique-numérique (CAN) est l’un des blocs les plus critiques de ces appareils et qu’il doit convertir efficacement les signaux analogiques au monde numérique pour effectuer un post-traitement tel que l’extraction de caractéristiques. Parmi les différents types de CAN, les modulateurs Delta Sigma (��M) ont été utilisés dans ces appareils en raison des fonctionnalités alléchantes qu’ils offrent. En raison du suréchantillonnage et pour éloigner le bruit de la bande d’intérêt, un CAN haute résolution peut être obtenu avec les architectures ��. Il offre également un compromis entre la fréquence d’échantillonnage et la résolution, tout en offrant une architecture programmable pour réaliser un CAN flexible. Ces CAN peuvent être implémentés avec des blocs analogiques de faible précision. De plus, ils peuvent être efficacement optimisés au niveau de l’architecture et circuits correspondants. Cette dernière caractéristique a été une motivation pour proposer différentes architectures au fil des ans. Cette thèse contribue à ce sujet en explorant de nouvelles architectures pour optimiser la structure ��M en termes de résolution, de consommation d’énergie et de surface de silicium. Des soucis particuliers doivent également être pris en compte pour faciliter la mise en œuvre du ��M. D’autre part, les nouveaux procédés CMOS de conception et fabrication apportent des améliorations remarquables en termes de vitesse, de taille et de consommation d’énergie lors de la mise en œuvre de circuits numériques. Une telle mise à l’échelle agressive des procédés, rend la conception de blocs analogiques tel que un amplificateur de transconductance opérationnel (OTA), difficile. Par conséquent, des soins spéciaux sont également pris en compte dans cette thèse pour surmonter les problèmes énumérés. Ayant mentionné ci-dessus que cette thèse est principalement composée de deux parties principales. La première concerne les nouvelles architectures implémentées en mode de tension et la seconde partie contient une nouvelle architecture réalisée en mode hybride tension et temps.----------ABSTRACT The need for hand-held devices, smart-phones and medical implantable microelectronic sys-tems, is remarkably growing up. However, keeping all these electronic devices power optimized is one of the main challenges due to the lack of long life-time batteries utilized to power them up. It is a well-established fact that analog-to-digital converter (ADC) is one of the most critical building blocks of such devices and it needs to efficiently convert analog signals to the digital world to perform post processing such as channelizing, feature extraction, etc. Among various type of ADCs, Delta Sigma Modulators (��Ms) have been widely used in those devices due to the tempting features they offer. In fact, due to oversampling and noise-shaping technique a high-resolution ADC can be achieved with �� architectures. It also offers a compromise between sampling frequency and resolution while providing a highly-programmable approach to realize an ADC. Moreover, such ADCs can be implemented with low-precision analog blocks. Last but not the least, they are capable of being effectively power optimized at both architectural and circuit levels. The latter has been a motivation to proposed different architectures over the years.This thesis contributes to this topic by exploring new architectures to effectively optimize the ��M structure in terms of resolution, power consumption and chip area. Special cares must also be taken into account to ease the implementation of the ��M. On the other hand, advanced node CMOS processes bring remarkable improvements in terms of speed, size and power consumption while implementing digital circuits. Such an aggressive process scaling, however, make the design of analog blocks, e.g. operational transconductance amplifiers (OTAs), cumbersome. Therefore, special cares are also taken into account in this thesis to overcome the mentioned issues. Having had above mentioned discussion, this thesis is mainly split in two main categories. First category addresses new architectures implemented in a pure voltage domain and the second category contains new architecture realized in a hybrid voltage and time domain. In doing so, the thesis first focuses on a switched-capacitor implementation of a ��M while presenting an architectural solution to overcome the limitations of the previous approaches. This limitations include a power hungry adder in a conventional feed-forward topology as well as power hungry OTAs

    Power and area efficient reconfigurable delta sigma ADCs

    Get PDF

    Design of Inverter Based CMOS Amplifiers in Deep Nanoscale Technologies

    Get PDF
    In this work, it is proposed a fully differential ring amplifier topology with a deadzone voltage created by a CMOS resistor with a biasing circuit to increase the robustness over PVT variations. The study focuses on analyzing the performance of the ring amplifier over process, temperature, and supply voltage variations, in order to guarantee a viable industrial employment in a 7 nm FinFET CMOS technology node for being used as residue amplifier in ADCs. A ring amplifier is a small modular amplifier, derived from a ring oscillator. It is simple enough that it can quickly be designed using only a few inverters, capacitors, and switches. It can amplify with rail-to-rail output swing, competently charge large capacitive loads using slew-based charging, and scale well in performance according to process trends. In typical process corner, a gain of 72 dB is achieved with a settling time of 150 ps. Throughout the study, the proposed topology is compared with others presented in literature showing better results over corners and presenting a faster response. The proposed topology isn’t yet suitable for industry use, because it presents one corner significantly slower than the rest, namely process corner FF 125 °C, and process corner FS -40 °C with a small oscillation throughout the entire amplification period. Nevertheless, it proved itself to be a promising technique, showing a high gain and a fast settling without oscillation phase, with room for improvement.Neste trabalho, é proposta uma topologia de ring amplifier com a deadzone a ser criada através de uma resistência CMOS com um circuito de polarização para aumentar a robustez para as variações PVT. O estudo foca-se em analisar a performance do ring amplifier nas variações de processo, temperatura e tensão de alimentação, de forma a garantir um uso viável em indústria na tecnologia de 7 nm FinFET CMOS, para ser usado como amplificador de resíduo em ADCs. Um ring amplifier é um pequeno amplificador modular, derivado do ring oscillator. É simples o suficiente para ser facilmente projetado usando apenas poucos inversores, condensadores e interruptores. Consegue amplificar com rail-to-rail output swing, carregar grandes cargas capacitivas com carregamento slew-based e escalar bem em termos de performance de acordo com o processo. No typical process corner, foi obtido um ganho de 72 dB com um tempo de estabilização de 150 ps. Durante o estudo, a topologia proposta é comparada com outras presentes na literatura mostrando melhores resultados over corners e apresentando uma resposta mais rápida. A topologia proposta ainda não está preparada para uso industrial uma vez que apresenta um corner significativamente mais lento que os restantes, nomeadamente, process corner FF 125 °C, e outro process corner, FS -40 °C, com uma pequena oscilação durante todo o período de amplificação. Todavia, provou ser uma técnica promissora, apresentando um ganho elevado e uma rápida estabilização sem fase de oscilação, com espaço para melhoria

    Low-pass CMOS Sigma-Delta Converter

    Get PDF
    A crescente necessidade em dar-se uma melhor saúde à população obriga ao desenvolvimento de novos e melhores dispositivos médicos. Atualmente, uma área de desenvolvimento importante é a de dispositivos portáteis para análise de sinais biológicos, tais como o eletrocardiograma ou o electroencefalograma, ajudando os profissionais de saúde a fazer rápidos diagnósticos no terreno, ou mesmo para serem usados por cidadãos que necessitem de vigilância constante. O desenvolvimento destes aparelhos traz novos desafios para a comunidade cientifica, nomeadamente na interface analógico/digital, na qualidade dos dados obtidos e no gasto energético. Para se conceber um bom dispositivos médico é necessário um conversor analógico/digital para frequências baixas, com baixo consumo energético e elevada resolução. Esta dissertação começa por fornecer ao leitor a teoria básica sobre conversores analógico/digital (ADC) e estado de arte. Como principal objetivo do trabalho desenvolvido, é descrito o desenho de um ADC baseado numa arquitetura Sigma-Delta que vá de encontro aos requisitos mencionados. O conversor foi implementado numa tecnologia 130 nm CMOS, usando uma frequência de amostragem de 1 MHz, com uma largura de banda de 1 kHz e tensão de alimentação 1,2 V. É usada, nos integradores do sigma-delta, uma invulgar tipologia de Opamp de forma a obter um ganho elevado, sem recurso a técnicas cascode. O quantizador possui uma resolução de 1,5 bits e é realizado com dois comparadores dinâmicos, de forma a minimizar o consumo energético.The growing need to provide better health for the population requires the development of new and better medical devices. Portable devices for the analysis of biological signals, such as the electrocardiogram or electroencephalogram, is nowadays an important development, helping health professionals to come up with fast diagnoses on the field, or even for use by citizens who require constant vigilance . Developing these devices brings new challenges to the scientific community, namely at the analog/digital interface, the quality of data and power consumption. In order to design a good medical device it is necessary an analog/digital converter for low frequencies, with low power consumption and high resolution. This dissertation begins by providing the reader with the basic theory of analog/digital (ADC) and its state of the art. The main goal of the work is the design of an ADC based on a Sigma-Delta architecture that meets the necessary medical requirements. The converter was implemented in a 130 nm CMOS technology using a sampling frequency of 1 MHz, with a bandwidth of 1 kHz, and a source voltage of 1.2 V. The integrators of sigma-delta employs an unusual Opamp typology in order to reach a high gain, without resourcing to cascode techniques. The quantizer has a resolution of 1.5 bits and is realized with two dynamic comparators, in order to minimize power consumption

    First order sigma-delta modulator of an oversampling ADC design in CMOS using floating gate MOSFETS

    Get PDF
    We report a new architecture for a sigma-delta oversampling analog-to-digital converter (ADC) in which the first order modulator is realized using the floating gate MOSFETs at the input stage of an integrator and the comparator. The first order modulator is designed using an 8 MHz sampling clock frequency and implemented in a standard 1.5µm n-well CMOS process. The decimator is an off-chip sinc-filter and is programmed using the VERILOG and tested with Altera Flex EPF10K70RC240 FPGA board. The ADC gives an 8-bit resolution with a 65 kHz bandwidth

    Low-voltage low-power continuous-time delta-sigma modulator designs

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    LOW POWER ANALOG-TO-DIGITAL CONVERSION CIRCUIT FOR AUDIO APPLICATION

    Get PDF
    In recent years, demand for a mixed signal LSI used for electronic equipment is increasing. High precision and low power consumption are required for ADCs for audio applications. ΔΣ ADC is a method to realize highly accurate AD conversion. However, power efficiency is poor as compared with general ADC configuration. This paper proposes a two steps ADC using a SAR-ADC and ΔΣ-ADC. The SAR-ADC arranged in the preceding stage can relax the required performance of the analog circuit of ΔΣ ADC. Therefore, low power consumption can be achieved. This proposal is designed with 0.18um CMOS. The performance of proposed system is confirmed by system simulation using MATLAB / Simulink and circuit simulation using Virtuoso / spectre, respectively

    High-Bandwidth Voltage-Controlled Oscillator based architectures for Analog-to-Digital Conversion

    Get PDF
    The purpose of this thesis is the proposal and implementation of data conversion open-loop architectures based on voltage-controlled oscillators (VCOs) built with ring oscillators (RO-based ADCs), suitable for highly digital designs, scalable to the newest complementary metal-oxide-semiconductor (CMOS) nodes. The scaling of the design technologies into the nanometer range imposes the reduction of the supply voltage towards small and power-efficient architectures, leading to lower voltage overhead of the transistors. Additionally, phenomena like a lower intrinsic gain, inherent noise, and parasitic effects (mismatch between devices and PVT variations) make the design of classic structures for ADCs more challenging. In recent years, time-encoded A/D conversion has gained relevant popularity due to the possibility of being implemented with mostly digital structures. Within this trend, VCOs designed with ring oscillator based topologies have emerged as promising candidates for the conception of new digitization techniques. RO-based data converters show excellent scalability and sensitivity, apart from some other desirable properties, such as inherent quantization noise shaping and implicit anti-aliasing filtering. However, their nonlinearity and the limited time delay achievable in a simple NOT gate drastically limits the resolution of the converter, especially if we focus on wide-band A/D conversion. This thesis proposes new ways to alleviate these issues. Firstly, circuit-based techniques to compensate for the nonlinearity of the ring oscillator are proposed and compared to equivalent state-of-the-art solutions. The proposals are designed and simulated in a 65-nm CMOS node for open-loop RO-based ADC architectures. One of the techniques is also validated experimentally through a prototype. Secondly, new ways to artificially increase the effective oscillation frequency are introduced and validated by simulations. Finally, new approaches to shape the quantization noise and filter the output spectrum of a RO-based ADC are proposed theoretically. In particular, a quadrature RO-based band-pass ADC and a power-efficient Nyquist A/D converter are proposed and validated by simulations. All the techniques proposed in this work are especially devoted for highbandwidth applications, such as Internet-of-Things (IoT) nodes or maximally digital radio receivers. Nevertheless, their field of application is not restricted to them, and could be extended to others like biomedical instrumentation or sensing.El propósito de esta tesis doctoral es la propuesta y la implementación de arquitecturas de conversión de datos basadas en osciladores en anillos, compatibles con diseños mayoritariamente digitales, escalables en los procesos CMOS de fabricación más modernos donde las estructuras digitales se ven favorecidas. La miniaturización de las tecnologías CMOS de diseño lleva consigo la reducción de la tensión de alimentación para el desarrollo de arquitecturas pequeñas y eficientes en potencia. Esto reduce significativamente la disponibilidad de tensión para saturar transistores, lo que añadido a una ganancia cada vez menor de los mismos, ruido y efectos parásitos como el “mismatch” y las variaciones de proceso, tensión y temperatura han llevado a que sea cada vez más complejo el diseño de estructuras analógicas eficientes. Durante los últimos años la conversión A/D basada en codificación temporal ha ganado gran popularidad dado que permite la implementación de estructuras mayoritariamente digitales. Como parte de esta evolución, los osciladores controlados por tensión diseñados con topologías de oscilador en anillo han surgido como un candidato prometedor para la concepción de nuevas técnicas de digitalización. Los convertidores de datos basados en osciladores en anillo son extremadamente sensibles (variación de frecuencia con respecto a la señal de entrada) así como escalables, además de otras propiedades muy atractivas, como el conformado espectral de ruido de cuantificación y el filtrado “anti-aliasing”. Sin embargo, su respuesta no lineal y el limitado tiempo de retraso alcanzable por una compuerta NOT restringen la resolución del conversor, especialmente para conversión A/D en aplicaciones de elevado ancho de banda. Esta tesis doctoral propone nuevas técnicas para aliviar este tipo de problemas. En primer lugar, se proponen técnicas basadas en circuito para compensar el efecto de la no linealidad en los osciladores en anillo, y se comparan con soluciones equivalentes ya publicadas. Las propuestas se diseñan y simulan en tecnología CMOS de 65 nm para arquitecturas en lazo abierto. Una de estas técnicas presentadas es también validada experimentalmente a través de un prototipo. En segundo lugar, se introducen y validan por simulación varias formas de incrementar artificialmente la frecuencia de oscilación efectiva. Para finalizar, se proponen teóricamente dos enfoques para configurar nuevas formas de conformación del ruido de cuantificación y filtrado del espectro de salida de los datos digitales. En particular, son propuestos y validados por simulación un ADC pasobanda en cuadratura de fase y un ADC de Nyquist de gran eficiencia en potencia. Todas las técnicas propuestas en este trabajo están destinadas especialmente para aplicaciones de alto ancho de banda, tales como módulos para el Internet de las cosas o receptores de radiofrecuencia mayoritariamente digitales. A pesar de ello, son extrapolables también a otros campos como el de la instrumentación biomédica o el de la medición de señales mediante sensores.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Juan Pablo Alegre Pérez.- Secretario: Celia López Ongil.- Vocal: Fernando Cardes Garcí
    corecore