20 research outputs found

    Low-voltage Low-power Switched-Capacitor ?S Modulator Design

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Low-voltage low-power continuous-time delta-sigma modulator designs

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Power and area efficient reconfigurable delta sigma ADCs

    Get PDF

    A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation

    Get PDF
    Infrared imaging technology, used both to study deep-space bodies' radiation and environmental changes on Earth, experienced constant improvements in the last few years, pushing data converter designers to face new challenges in terms of speed, power consumption and robustness against extremely harsh operating conditions. This paper presents a 96.6-dB-SNDR (Signal-to-Noise-plus-Distortion Ratio) 50-kHz-bandwidth fourth-order single-bit switched-capacitor delta-sigma modulator for ADC operating at 1.8 V and consuming 7.9 mW fit for space instrumentation. The circuit features novel Class-AB single-stage switched variable-mirror amplifiers (SVMAs) enabling low-power operation, as well as low sensitivity to both process and temperature deviations for the whole modulator. The physical implementation resulted in a 1.8-mm 2 chip integrated in a standard 0.18-μm 1-poly-6-metal (1P6M) CMOS technology, and it reaches a 164.6-dB Schreier figure of merit from experimental SNDR measurements without making use of any clock bootstrapping, analog calibration, nor digital compensation technique. When coupled to a IR imager, the current design allows more than 50 frames per minute with a resolution of 16 effective number of bits (ENOB) while consuming less than 300 mW

    Architectural Alternatives to Implement High-Performance Delta-Sigma Modulators

    Get PDF
    RÉSUMÉ Le besoin d’appareils portatifs, de téléphones intelligents et de systèmes microélectroniques implantables médicaux s’accroît remarquablement. Cependant, l’optimisation de l’alimentation de tous ces appareils électroniques portables est l’un des principaux défis en raison du manque de piles à grande capacité utilisées pour les alimenter. C’est un fait bien établi que le convertisseur analogique-numérique (CAN) est l’un des blocs les plus critiques de ces appareils et qu’il doit convertir efficacement les signaux analogiques au monde numérique pour effectuer un post-traitement tel que l’extraction de caractéristiques. Parmi les différents types de CAN, les modulateurs Delta Sigma (��M) ont été utilisés dans ces appareils en raison des fonctionnalités alléchantes qu’ils offrent. En raison du suréchantillonnage et pour éloigner le bruit de la bande d’intérêt, un CAN haute résolution peut être obtenu avec les architectures ��. Il offre également un compromis entre la fréquence d’échantillonnage et la résolution, tout en offrant une architecture programmable pour réaliser un CAN flexible. Ces CAN peuvent être implémentés avec des blocs analogiques de faible précision. De plus, ils peuvent être efficacement optimisés au niveau de l’architecture et circuits correspondants. Cette dernière caractéristique a été une motivation pour proposer différentes architectures au fil des ans. Cette thèse contribue à ce sujet en explorant de nouvelles architectures pour optimiser la structure ��M en termes de résolution, de consommation d’énergie et de surface de silicium. Des soucis particuliers doivent également être pris en compte pour faciliter la mise en œuvre du ��M. D’autre part, les nouveaux procédés CMOS de conception et fabrication apportent des améliorations remarquables en termes de vitesse, de taille et de consommation d’énergie lors de la mise en œuvre de circuits numériques. Une telle mise à l’échelle agressive des procédés, rend la conception de blocs analogiques tel que un amplificateur de transconductance opérationnel (OTA), difficile. Par conséquent, des soins spéciaux sont également pris en compte dans cette thèse pour surmonter les problèmes énumérés. Ayant mentionné ci-dessus que cette thèse est principalement composée de deux parties principales. La première concerne les nouvelles architectures implémentées en mode de tension et la seconde partie contient une nouvelle architecture réalisée en mode hybride tension et temps.----------ABSTRACT The need for hand-held devices, smart-phones and medical implantable microelectronic sys-tems, is remarkably growing up. However, keeping all these electronic devices power optimized is one of the main challenges due to the lack of long life-time batteries utilized to power them up. It is a well-established fact that analog-to-digital converter (ADC) is one of the most critical building blocks of such devices and it needs to efficiently convert analog signals to the digital world to perform post processing such as channelizing, feature extraction, etc. Among various type of ADCs, Delta Sigma Modulators (��Ms) have been widely used in those devices due to the tempting features they offer. In fact, due to oversampling and noise-shaping technique a high-resolution ADC can be achieved with �� architectures. It also offers a compromise between sampling frequency and resolution while providing a highly-programmable approach to realize an ADC. Moreover, such ADCs can be implemented with low-precision analog blocks. Last but not the least, they are capable of being effectively power optimized at both architectural and circuit levels. The latter has been a motivation to proposed different architectures over the years.This thesis contributes to this topic by exploring new architectures to effectively optimize the ��M structure in terms of resolution, power consumption and chip area. Special cares must also be taken into account to ease the implementation of the ��M. On the other hand, advanced node CMOS processes bring remarkable improvements in terms of speed, size and power consumption while implementing digital circuits. Such an aggressive process scaling, however, make the design of analog blocks, e.g. operational transconductance amplifiers (OTAs), cumbersome. Therefore, special cares are also taken into account in this thesis to overcome the mentioned issues. Having had above mentioned discussion, this thesis is mainly split in two main categories. First category addresses new architectures implemented in a pure voltage domain and the second category contains new architecture realized in a hybrid voltage and time domain. In doing so, the thesis first focuses on a switched-capacitor implementation of a ��M while presenting an architectural solution to overcome the limitations of the previous approaches. This limitations include a power hungry adder in a conventional feed-forward topology as well as power hungry OTAs

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    The influence of the hysteresis comparator delay on the central frequency of an asynchronous sigma-delta modulator

    Get PDF
    U radu su opisane osnovne karakteristike sinkronog i asinkronog sigma-delta (ASD) modulatora i dan je pregled trenutnog stanja u području primjene sigma-delta (SD) modulatora. U svrhu usporedbe, opisane su osnovne razlike izmeñu sinkrone i asinkrone izvedbe SD modulatora. Provedena je analiza utjecaja vremena kašnjenja komparatora s histerezom na radne značajke ASD modulatora. Matematičkim proračunima, računalnom simulacijom i izvedenim mjerenjima na modelima pokazano je smanjenje središnje frekvencije zbog utjecaja vremena kašnjenja. Za smanjenje nepoželjnog utjecaja vremena kašnjenja na radne značajke ASD modulatora predložene su dvije metode. Prva metoda se zasniva na ograničenju izlaznog signala iz integratora, čime se ostvaruje povećanje izlazne frekvencije (metoda 1), dok se kod druge metode uvodi amplitudna modulacija napona pragova histereze koja izlazni signal integratora postavlja unutar vrijednosti proračunatih napona pragova histereze. Na temelju matematičkog modela ASD modulatora, za potrebe simulacije utjecaja vremena kašnjenja i metoda za poboljšanje (metoda 1 i metoda 2), kreiran je Simulink model u programskom alatu Matlab®. U Matlab okruženju simuliran je i sklop za pretvorbu 1- bitovnog ASD signala govornog pojasa (frekvencija do 4 kHz) u sinkroni PCM m-bitovni digitalni signal. U simulacijskom programu Multisim Analog Devices Edition simulacijski model ASD modulatora primijenjen je na pojačalo snage D klase na kojem je takoñer ispitana metoda 2. Za verifikaciju matematičkih modela mjerenjima izrañen je laboratorijski model ASD modulatora s mogućnošću primjene metode 1 i 2. Rezultatima mjerenja na laboratorijskom modelu ASD modulatora potvrñeno je poboljšanje radnih značajki ASD modulatora primjenom navedenih metoda. Na sklopu pojačala snage D klase izmjereno je ukupno harmonijsko izobličenje izlaznog signala. Dokazano je da se primjenom metode 2 faktor ukupnog harmonijskog izobličenja smanjuje u cijelom rasponu amplituda ulaznog signala.The basics properties of the synchronous and asynchronous sigma-delta (ASD) modulators have been described and current state-of-art in sigma-delta modulation applications has been reported. For comparison, the major differences between synchronous and asynchronous SD modulators have been described. Analysis of hysteresis comparator propagation delay influence to the ASD modulator performances has been provided. The mathematical analysis, computer simulations and measurement results confirm the central frequency detoriation due to propagation delay influence. For propagation delay compensation two methods have been proposed. The first method is based on limitation of the integrator output voltage (method 1), which increses ASD central frequency, while second method introduce hysteresis threshold voltage amplitude modulation which keeps the integrator output voltage within calculated hysteresis threshold levels. Based on the mathematical model of the ASD modulator, for simulation purposes of the propagation delay influence and the proposed method for propagation delay compensation (method 1 and method 2), Simulink model in Matlab® has been created. Matlab implementation of the A/D converter circuit for 1-bit ASD signal to synchronous PCM m-bit digital word for voice-band applications has also been proposed. Using Multisim Analog Devices Edition, simulation model of ASD modulator has been applied to class-D power amplifier for method 2 verification. For measurement results, the ASD modulator ciruit has been implemented with possibility for method 1 and method 2 application. The measuerment results on the ASD circuit confirm the mathematical analysis for the propagation delay influence and compensation method contributions which improve ASD modulator performances. For ASD modulator application in class-D power amplifier, total harmonic distorsion has been measured. It has been shown that method 2 implementation reduces total harmonic distorsion of output signal for full range of input signal amplitudes

    Design of a 16-bit 50-kHz low-power SC delta-sigma modulator for ADC in 0.18um CMOS technology

    Get PDF
    This Master Thesis work aims to design a low power high-resolution Delta-Sigma modulator for ADC in a low-cost standard mixed-mode CMOS technology. For this purpose, a single-bit single loop Delta-Sigma architecture will be selected in order to mitigate distortion issues caused by technology mismatching. Also, the switched capacitor (SC) circuit implementation of the Delta-Sigma modulator will avoid the use of any internal voltage supply bootstrapping for biasing critical switches in favor of extending IC lifetime. The designer will take benefit of the low-power Class-AB OpA general purpose 16 Bits Sigma-Delta modulator ADC for double precision audio 50 kHz bandwidth, targeted for Low-power operation, involving no additional digital circuit compensation, no bootstrapping techniques and resistor-less topologies, and relaying on Switched Capacitor Sigma-Delta modulator topologies for robust operation and insensitivity to process and temperature variations, is presented in this work. Designed in a commercial 180 nm technology, the whole circuit static current is calculated in 620 uA with a nominal voltage supply of 1.8 V, performing a Schreier FOM of 174.16 dB. This outstanding state-of-the-art forseen FOM is achieved by the use of architectural and circuital Low-power techniques. At the architectural level a single loop Low-distortion topology with the optimum order and coefficients have been chosen, while at circuit level very novel OTA based on Variable Mirror Amplifiers allows an efficient Class-AB operation. Specially optimized switched variable mirror amplifiers with a novel design methodology based on Bottom-up approach, allows faster design stages ensuring feasable circuit performance at architectural level without the need of large iterative simulations of the complete SC Sigma-Delta modulator. Simulation results confirms the complete optimization process and the metioned advantages with respect to the tradicional approach

    Ultra low power wearable sleep diagnostic systems

    Get PDF
    Sleep disorders are studied using sleep study systems called Polysomnography that records several biophysical parameters during sleep. However, these are bulky and are typically located in a medical facility where patient monitoring is costly and quite inefficient. Home-based portable systems solve these problems to an extent but they record only a minimal number of channels due to limited battery life. To surmount this, wearable sleep system are desired which need to be unobtrusive and have long battery life. In this thesis, a novel sleep system architecture is presented that enables the design of an ultra low power sleep diagnostic system. This architecture is capable of extending the recording time to 120 hours in a wearable system which is an order of magnitude improvement over commercial wearable systems that record for about 12 hours. This architecture has in effect reduced the average power consumption of 5-6 mW per channel to less than 500 uW per channel. This has been achieved by eliminating sampled data architecture, reducing the wireless transmission rate and by moving the sleep scoring to the sensors. Further, ultra low power instrumentation amplifiers have been designed to operate in weak inversion region to support this architecture. A 40 dB chopper-stabilised low power instrumentation amplifiers to process EEG were designed and tested to operate from 1.0 V consuming just 3.1 uW for peak mode operation with DC servo loop. A 50 dB non-EEG amplifier continuous-time bandpass amplifier with a consumption of 400 nW was also fabricated and tested. Both the amplifiers achieved a high CMRR and impedance that are critical for wearable systems. Combining these amplifiers with the novel architecture enables the design of an ultra low power sleep recording system. This reduces the size of the battery required and hence enables a truly wearable system.Open Acces
    corecore