13 research outputs found

    Ultra low power wearable sleep diagnostic systems

    Get PDF
    Sleep disorders are studied using sleep study systems called Polysomnography that records several biophysical parameters during sleep. However, these are bulky and are typically located in a medical facility where patient monitoring is costly and quite inefficient. Home-based portable systems solve these problems to an extent but they record only a minimal number of channels due to limited battery life. To surmount this, wearable sleep system are desired which need to be unobtrusive and have long battery life. In this thesis, a novel sleep system architecture is presented that enables the design of an ultra low power sleep diagnostic system. This architecture is capable of extending the recording time to 120 hours in a wearable system which is an order of magnitude improvement over commercial wearable systems that record for about 12 hours. This architecture has in effect reduced the average power consumption of 5-6 mW per channel to less than 500 uW per channel. This has been achieved by eliminating sampled data architecture, reducing the wireless transmission rate and by moving the sleep scoring to the sensors. Further, ultra low power instrumentation amplifiers have been designed to operate in weak inversion region to support this architecture. A 40 dB chopper-stabilised low power instrumentation amplifiers to process EEG were designed and tested to operate from 1.0 V consuming just 3.1 uW for peak mode operation with DC servo loop. A 50 dB non-EEG amplifier continuous-time bandpass amplifier with a consumption of 400 nW was also fabricated and tested. Both the amplifiers achieved a high CMRR and impedance that are critical for wearable systems. Combining these amplifiers with the novel architecture enables the design of an ultra low power sleep recording system. This reduces the size of the battery required and hence enables a truly wearable system.Open Acces

    Data Conversion Within Energy Constrained Environments

    Get PDF
    Within scientific research, engineering, and consumer electronics, there is a multitude of new discrete sensor-interfaced devices. Maintaining high accuracy in signal quantization while staying within the strict power-budget of these devices is a very challenging problem. Traditional paths to solving this problem include researching more energy-efficient digital topologies as well as digital scaling.;This work offers an alternative path to lower-energy expenditure in the quantization stage --- content-dependent sampling of a signal. Instead of sampling at a constant rate, this work explores techniques which allow sampling based upon features of the signal itself through the use of application-dependent analog processing. This work presents an asynchronous sampling paradigm, based off the use of floating-gate-enabled analog circuitry. The basis of this work is developed through the mathematical models necessary for asynchronous sampling, as well the SPICE-compatible models necessary for simulating floating-gate enabled analog circuitry. These base techniques and circuitry are then extended to systems and applications utilizing novel analog-to-digital converter topologies capable of leveraging the non-constant sampling rates for significant sample and power savings

    A comparison of statistical machine learning methods in heartbeat detection and classification

    Get PDF
    In health care, patients with heart problems require quick responsiveness in a clinical setting or in the operating theatre. Towards that end, automated classification of heartbeats is vital as some heartbeat irregularities are time consuming to detect. Therefore, analysis of electro-cardiogram (ECG) signals is an active area of research. The methods proposed in the literature depend on the structure of a heartbeat cycle. In this paper, we use interval and amplitude based features together with a few samples from the ECG signal as a feature vector. We studied a variety of classification algorithms focused especially on a type of arrhythmia known as the ventricular ectopic fibrillation (VEB). We compare the performance of the classifiers against algorithms proposed in the literature and make recommendations regarding features, sampling rate, and choice of the classifier to apply in a real-time clinical setting. The extensive study is based on the MIT-BIH arrhythmia database. Our main contribution is the evaluation of existing classifiers over a range sampling rates, recommendation of a detection methodology to employ in a practical setting, and extend the notion of a mixture of experts to a larger class of algorithms

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition
    corecore