6 research outputs found

    A Low Power Low Supply MOS-Only Subthreshold Voltage Reference for Wide Temperature Range

    Get PDF
    A Sub-1V, MOS-only Voltage Reference Circuit (VRC) has been proposed with the utmost of transistors working as subthreshold region for low-supply and low-power applications. A supply-insensitive current is passed to Active Load Circuit (ALC) for supply and temperature independence at the output reference voltage. It has four current mirrors connected in a closed loop configuration to generate a supply-independent current which is passed through the ALC resulting supply and temperature insensitive output reference voltage. The ALC has a combination of two subthreshold NMOS transistors having different threshold voltages. The presented VRC is simulated using standard 90 nm CMOS model for 0.25-1 V supply voltage range. The simulation result gives minimum operating voltage required as 0.25 V for which all transistors work in their respective region of operation. For the supply range of 0.25-1 V, the obtained mean voltage reference is 100.4 mV with the line regulation of 0.186 mV/V. The temperature coefficient (TC) of 51ppm/°C is achieved for a wide temperature range of -50 to 135°C with the given minimal operating supply voltage. The power dissipation for minimal supply voltage at room temperature is 33 nW. The proposed VRC exhibits a high PSRR of -52.5 dB at 100Hz and -29 dB at 1 MHz

    Design And Simulation Of Cmos-Based Bandgap Reference Voltage With Compensation Circuit Using 0.18 Μm Process Technology

    Get PDF
    Voltage reference circuit is important in electronic world nowadays. A CMOS based bandgap reference (BGR) circuit is preferred due to its size is smaller and consume less power. However, the drawback is the reference voltage variation of CMOS based BGR circuit is big in wide range of temperature, thus the temperature coefficient of it is high. Hence, an improved version of piecewise curvature-corrected Bandgap voltage reference circuit which has low voltage variation in wide range of temperature is introduced in this project to overcome the problem mentioned above. The BGR circuit is designed using CMOS compatible process in 0.18μm CMOS process technology and simulated by using Cadence tool. The proposed piecewise curvature-corrected BGR operate properly with output voltage of 558.6 mV to 558.3 mV by varying the voltage supply 1.4 V to 3.3 V at 27°C and the line regulation is 0.016% . Besides that, the best temperature coefficient obtained is 9.2 ppm/°C in the temperature range of -25°C to 150°C at 1.8 V. The PSSR of the proposed circuit is -69.91 dB at frequency less 10 kHz. The layout design of the proposed circuit is done by using Silterra 0.18 μm standard CMOS process and total die area is 0.0175 mm2 and temperature coefficient obtained in post layout simulation is 11.66ppm/°C. In short, it is found that the proposed design of BGR circuit is able to achieve high temperature range and relatively low voltage variation

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    Survey on individual components for a 5 GHz receiver system using 130 nm CMOS technology

    Get PDF
    La intención de esta tesis es recopilar información desde un punto de vista general sobre los diferentes tipos de componentes utilizados en un receptor de señales a 5 GHz utilizando tecnología CMOS. Se ha realizado una descripción y análisis de cada uno de los componentes que forman el sistema, destacando diferentes tipos de configuraciones, figuras de mérito y otros parámetros. Se muestra una tabla resumen al final de cada sección, comparando algunos diseños que se han ido presentando a lo largo de los años en conferencias internacionales de la IEEE.The intention of this thesis is to gather information from an overview point about the different types of components used in a 5 GHz receiver using CMOS technology. A review of each of the components that form the system has been made, highlighting different types of configurations, figure of merits and parameters. A summary table is shown at the end of each section, comparing many designs that have been presented over the years at international conferences of the IEEE.Departamento de Ingeniería Energética y FluidomecánicaGrado en Ingeniería en Electrónica Industrial y Automátic

    A 0.45-V, 14.6-nW CMOS Subthreshold Voltage Reference With No Resistors and No BJTs

    No full text

    Microelectronic Devices and Circuits - 2006 Electronic Edition

    Get PDF
    This book is based on the textbook Microelectronic Devices and Circuits by Clifton G. Fonstad, which was published by McGraw-Hill in 1994 (ISBN 0-07-021-496-4). McGraw-Hill has declared the original textbook “out of print” and has transferred the copyright to the author, Clifton G. Fonstad. Errata in the original text identified as of August 15, 2006 have been corrected in this edition. This edition will appear enlarged 110% from the original page size when printed on standard letter paper (8.5” x 11”).Combining semiconductor device physics and modeling with electronic circuit analysis and practice in a single sophomore/junior level microelectronics course, this textbook offers an integrated approach so students can truly understand the interaction between semiconductor physics, device structure, and integrated circuit design and operation. The balanced, modular treatments of bipolar and MOS devices, and of analog and digital circuits can be easily adapted to a particular instructor or class’s needs. SPICE models, MESFET’s, optoelectronic devices, worked examples, and end-of-the-chapter problems further enhance the text
    corecore