69 research outputs found

    Low-Voltage, Low-Area, nW-Power CMOS Digital-Based Biosignal Amplifier

    Get PDF
    This paper presents the operation principle and the silicon characterization of a power efficient ultra-low voltage and ultra-low area fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA). Measured results in 180nm CMOS prototypes show that the proposed BioDIGOTA is able to work with a supply voltage down to 400 mV, consuming only 95 nW. Owing to its intrinsically highly-digital feature, the BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22X times compared to the current state of the art, while keeping reasonable system performance, such as 7.6 NEF with 1.25 μVRMS input referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of CMRR and 55 dB of PSRR

    Low-voltage, low-area, nW-power CMOS digital-based biosignal amplifier

    Get PDF
    This paper presents the operation principle and the silicon characterization of a power efficient ultra-low voltage and ultra-low area fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA). Measured results in 180nm CMOS prototypes show that the proposed BioDIGOTA is able to work with a supply voltage down to 400 mV, consuming only 95 nW. Owing to its intrinsically highly-digital feature, the BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22× times compared to the current state of the art, while keeping reasonable system performance, such as 7.6 NEF with 1.25 μVRMS input referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of CMRR and 55 dB of PSRR

    Prolonged energy harvesting for ingestible devices

    Get PDF
    Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged-monitoring systems for patients. Although previous biocompatible power-harvesting systems for in vivo use have demonstrated short (minute-long) bursts of power from the stomach, little is known about the potential for powering electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 μW mm⁻² of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell could provide power to the next generation of ingestible electronic devices for prolonged periods of time inside the gastrointestinal tract.National Institutes of Health (U.S.) (Grant EB-000244

    Digital-based analog processing in nanoscale CMOS ICs for IoT applications

    Get PDF
    The Internet-of-Things (IoT) concept has been opening up a variety of applications, such as urban and environmental monitoring, smart health, surveillance, and home automation. Most of these IoT applications require more and more power/area efficient Complemen tary Metal–Oxide–Semiconductor (CMOS) systems and faster prototypes (lower time-to market), demanding special modifications in the current IoT design system bottleneck: the analog/RF interfaces. Specially after the 2000s, it is evident that there have been significant improvements in CMOS digital circuits when compared to analog building blocks. Digital circuits have been taking advantage of CMOS technology scaling in terms of speed, power consump tion, and cost, while the techniques running behind the analog signal processing are still lagging. To decrease this historical gap, there has been an increasing trend in finding alternative IC design strategies to implement typical analog functions exploiting Digital in-Concept Design Methodologies (DCDM). This idea of re-thinking analog functions in digital terms has shown that Analog ICs blocks can also avail of the feature-size shrinking and energy efficiency of new technologies. This thesis deals with the development of DCDM, demonstrating its compatibility for Ultra-Low-Voltage (ULV) and Power (ULP) IoT applications. This work proves this state ment through the proposing of new digital-based analog blocks, such as an Operational Transconductance Amplifiers (OTAs) and an ac-coupled Bio-signal Amplifier (BioAmp). As an initial contribution, for the first time, a silicon demonstration of an embryonic Digital-Based OTA (DB-OTA) published in 2013 is exhibited. The fabricated DB-OTA test chip occupies a compact area of 1,426 µm2 , operating at supply voltages (VDD) down to 300 mV, consuming only 590 pW while driving a capacitive load of 80pF. With a Total Harmonic Distortion (THD) lower than 5% for a 100mV input signal swing, its measured small-signal figure of merit (FOMS) and large-signal figure of merit (FOML) are 2,101 V −1 and 1,070, respectively. To the best of this thesis author’s knowledge, this measured power is the lowest reported to date in OTA literature, and its figures of merit are the best in sub-500mV OTAs reported to date. As the second step, mainly due to the robustness limitation of previous DB-OTA, a novel calibration-free digital-based topology is proposed, named here as Digital OTA (DIG OTA). A 180-nm DIGOTA test chip is also developed exhibiting an area below the 1000 µm2 wall, 2.4nW power under 150pF load, and a minimum VDD of 0.25 V. The proposed DIGOTA is more digital-like compared with DB-OTA since no pseudo-resistor is needed. As the last contribution, the previously proposed DIGOTA is then used as a building block to demonstrate the operation principle of power-efficient ULV and ultra-low area (ULA) fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA) such as extreme low area Body Dust. Measured results in 180nm CMOS confirm that the proposed BioDIGOTA can work with a supply voltage down to 400 mV, consuming only 95 nW. The BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22X times compared to the current state of the art while keeping reasonable system performance, such as 7.6 Noise Efficiency Factor (NEF) with 1.25 µVRMS input-referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of the common-mode rejection ratio (CMRR) and 55 dB of power supply rejection ratio (PSRR). After reviewing the current DCDM trend and all proposed silicon demonstrations, the thesis concludes that, despite the current analog design strategies involved during the analog block development

    Ultra-low Power Circuits for Internet of Things (IOT)

    Full text link
    Miniaturized sensor nodes offer an unprecedented opportunity for the semiconductor industry which led to a rapid development of the application space: the Internet of Things (IoT). IoT is a global infrastructure that interconnects physical and virtual things which have the potential to dramatically improve people's daily lives. One of key aspect that makes IoT special is that the internet is expanding into places that has been ever reachable as device form factor continue to decreases. Extremely small sensors can be placed on plants, animals, humans, and geologic features, and connected to the Internet. Several challenges, however, exist that could possibly slow the development of IoT. In this thesis, several circuit techniques as well as system level optimizations to meet the challenging power/energy requirement for the IoT design space are described. First, a fully-integrated temperature sensor for battery-operated, ultra-low power microsystems is presented. Sensor operation is based on temperature independent/dependent current sources that are used with oscillators and counters to generate a digital temperature code. Second, an ultra-low power oscillator designed for wake-up timers in compact wireless sensors is presented. The proposed topology separates the continuous comparator from the oscillation path and activates it only for short period when it is required. As a result, both low power tracking and generation of precise wake-up signal is made possible. Third, an 8-bit sub-ranging SAR ADC for biomedical applications is discussed that takes an advantage of signal characteristics. ADC uses a moving window and stores the previous MSBs voltage value on a series capacitor to achieve energy saving compared to a conventional approach while maintaining its accuracy. Finally, an ultra-low power acoustic sensing and object recognition microsystem that uses frequency domain feature extraction and classification is presented. By introducing ultra-low 8-bit SAR-ADC with 50fF input capacitance, power consumption of the frontend amplifier has been reduced to single digit nW-level. Also, serialized discrete Fourier transform (DFT) feature extraction is proposed in a digital back-end, replacing a high-power/area-consuming conventional FFT.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137157/1/seojeong_1.pd

    Design and implementation of a multi-modal sensor with on-chip security

    Get PDF
    With the advancement of technology, wearable devices for fitness tracking, patient monitoring, diagnosis, and disease prevention are finding ways to be woven into modern world reality. CMOS sensors are known to be compact, with low power consumption, making them an inseparable part of wireless medical applications and Internet of Things (IoT). Digital/semi-digital output, by the translation of transmitting data into the frequency domain, takes advantages of both the analog and digital world. However, one of the most critical measures of communication, security, is ignored and not considered for fabrication of an integrated chip. With the advancement of Moore\u27s law and the possibility of having a higher number of transistors and more complex circuits, the feasibility of having on-chip security measures is drawing more attention. One of the fundamental means of secure communication is real-time encryption. Encryption/ciphering occurs when we encode a signal or data, and prevents unauthorized parties from reading or understanding this information. Encryption is the process of transmitting sensitive data securely and with privacy. This measure of security is essential since in biomedical devices, the attacker/hacker can endanger users of IoT or wearable sensors (e.g. attacks at implanted biosensors can cause fatal harm to the user). This work develops 1) A low power and compact multi-modal sensor that can measure temperature and impedance with a quasi-digital output and 2) a low power on-chip signal cipher for real-time data transfer

    On-chip electrochemical capacitors and piezoelectric energy harvesters for self-powering sensor nodes

    Get PDF
    On-chip sensing and communications in the Internet of things platform have benefited from the miniaturization of faster and low power complementary-metal-oxide semiconductor (CMOS) microelectronics. Micro-electromechanical systems technology (MEMS) and development of novel nanomaterials have further improved the performance of sensors and transducers while also demonstrating reduction in size and power consumption. Integration of such technologies can enable miniaturized nodes to be deployed to construct wireless sensor networks for autonomous data acquisition. Their longevity, however, is determined by the lifetime of the power supply. Traditional batteries cannot fully fulfill the demands of sensor nodes that require long operational duration. Thus, we require solutions that produce their own electricity from the surroundings and store them for future utility. Furthermore, manufacturing of such a power supply must be compatible with CMOS and MEMS technology. In this thesis, we will describe on-chip electrochemical capacitors and piezoelectric energy harvesters as components of such a self-powered sensor node. Our piezoelectric microcantilevers confirm the feasibility of fabricating micro electro-mechanical-systems (MEMS) size two-degree-of-freedom systems which can address the major issue of small bandwidth of piezoelectric micro-energy harvesters. These devices use a cut-out trapezoidal cantilever beam, limited by its footprint area i.e. a 1 cm2^2 silicon die, to enhance the stress on the cantilever\u27s free end while reducing the gap remarkably between its first two eigenfrequencies in the 400 - 500 Hz and in the 1 - 2 kHz range. The energy from the M-shaped harvesters could be stored in rGO based on-chip electrochemical capacitors. The electrochemical capacitors are manufactured through CMOS compatible, reproducible, and reliable micromachining processes such as chemical vapor deposition of carbon nanofibers (CNF) and spin coating of graphene oxide based (GO) solutions. The impact of electrode geometry and electrode thickness is studied for CNF based electrodes. Furthermore, we have also demonstrated an improvement in their electrochemical performance and yield of spin coated electrochemical capacitors through surface roughening from iron and chromium nanoparticles. The CVD grown CNF and spin coated rGO based devices are evaluated for their respective trade-offs. Finally, to improve the energy density and demonstrate the versatility of the spin coating process, we manufactured electrochemical capacitors from various GO based composites with functional groups heptadecan-9-amine and octadecanamine. The materials were used as a stack to demonstrate high energy density for spin coated electrochemical capacitors. We have also examined the possibility of integrating these devices into a power management unit to fully realize a self-powering on-chip power supply through survey of package fabrication, choice of electrolyte, and device assembly

    Integrated circuit design for implantable neural interfaces

    Get PDF
    Progress in microfabrication technology has opened the way for new possibilities in neuroscience and medicine. Chronic, biocompatible brain implants with recording and stimulation capabilities provided by embedded electronics have been successfully demonstrated. However, more ambitious applications call for improvements in every aspect of existing implementations. This thesis proposes two prototypes that advance the field in significant ways. The first prototype is a neural recording front-end with spectral selectivity capabilities that implements a design strategy that leads to the lowest reported power consumption as compared to the state of the art. The second one is a bidirectional front-end for closed-loop neuromodulation that accounts for self-interference and impedance mismatch thus enabling simultaneous recording and stimulation. The design process and experimental verification of both prototypes is presented herein

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing
    corecore