3 research outputs found

    RF Frontend for Spectrum Analysis in Cognitive Radio

    Get PDF
    Advances in wireless technology have sparked a plethora of mobile communication standards to support a variety of applications. FCC predicts a looming crisis due to the exponentially growing demand for spectrum and it recommends to increase the efficiency of spectrum utilization. Cognitive Radio (CR) is envisioned as a radio technology which detects and exploits empty spectrum to improve the quality of communication. Spectrum analyzer for detecting spectrum holes is a key component required for implementing cognitive radio. Mitola's vision of using an RF Analog-to-Digital (ADC) to digitize the entire spectrum is not yet a reality. The traditional spectrum analysis technique based on a RF Front end using an LO Sweep is too slow, making it unsuitable to track fast hopping signals. In this work, we demonstrate an RF Frontend that can simplify the ADC's requirement by splitting the input spectrum into multiple channels. It avoids the problem of PLL settling by incorporating LO synthesis within the signal path using a concept called Iterative Down Converter. An example 0.75GHz-11.25GHz RF Channelizer is designed in 65nm Standard CMOS Process. The channelizer splits the input spectrum (10.5GHz bandwidth) into seven channels (each of bandwidth 1.5GHz). The channelizer shows the ability to rapidly switch from one channel to another (within a few ns) as well as down-converting multiple channels simultaneously (concurrency). The channelizer achieves a dynamic range of 54dB for a bandwidth of 10.5GHz, while consuming 540mW of power. Harmonic rejection mixer plays a key role in a broadband receiver. A novel order scalable harmonic rejection mixer architecture is described in this research. A proof-of-principle prototype has been designed and fabricated in a 45nm SOI technology. Experimental results demonstrate an operation range of 0.5GHz to 1.5GHz for the LO frequency while offering harmonic rejection better than 55dB for the 3rd harmonic and 58dB for the 5th harmonic across LO frequencies. While cognitive radio solves the spectrum efficiency problem in frequency domain, the electronic beam steering provides a spatial domain solution. Electronic beam forming using phased arrays have been claimed to improve spectrum efficiency by serving more number of users for a given bandwidth. A LO path phase-shifter with frequency-doubling is demonstrated for WiMAX applications

    HIGH PERFORMANCE CMOS WIDE-BAND RF FRONT-END WITH SUBTHRESHOLD OUT OF BAND SENSING

    Get PDF
    In future, the radar/satellite wireless communication devices must support multiple standards and should be designed in the form of system-on-chip (SoC) so that a significant reduction happen on cost, area, pins, and power etc. However, in such device, the design of a fully on-chip CMOS wideband receiver front-end that can process several radar/satellite signal simultaneously becomes a multifold complex problem. Further, the inherent high-power out-of-band (OB) blockers in radio spectrum will make the receiver more non-linear, even sometimes saturate the receiver. Therefore, the proper blocker rejection techniques need to be incorporated. The primary focus of this research work is the development of a CMOS high-performance low noise wideband receiver architecture with a subthreshold out of band sensing receiver. Further, the various reconfigurable mixer architectures are proposed for performance adaptability of a wideband receiver for incoming standards. Firstly, a high-performance low- noise bandwidthenhanced fully differential receiver is proposed. The receiver composed of a composite transistor pair noise canceled low noise amplifier (LNA), multi-gate-transistor (MGTR) trans-conductor amplifier, and passive switching quad followed by Tow Thomas bi-quad second order filter based tarns-impedance amplifier. An inductive degenerative technique with low-VT CMOS architecture in LNA helps to improve the bandwidth and noise figure of the receiver. The full receiver system is designed in UMC 65nm CMOS technology and measured. The packaged LNA provides a power gain 12dB (including buffer) with a 3dB bandwidth of 0.3G – 3G, noise figure of 1.8 dB having a power consumption of 18.75mW with an active area of 1.2mm*1mm. The measured receiver shows 37dB gain at 5MHz IF frequency with 1.85dB noise figure and IIP3 of +6dBm, occupies 2mm*1.2mm area with 44.5mW of power consumption. Secondly, a 3GHz-5GHz auxiliary subthreshold receiver is proposed to estimate the out of blocker power. As a redundant block in the system, the cost and power minimization of the auxiliary receiver are achieved via subthreshold circuit design techniques and implementing the design in higher technology node (180nm CMOS). The packaged auxiliary receiver gives a voltage gain of 20dB gain, the noise figure of 8.9dB noise figure, IIP3 of -10dBm and 2G-5GHz bandwidth with 3.02mW power consumption. As per the knowledge, the measured results of proposed main-high-performancereceiver and auxiliary-subthreshold-receiver are best in state of art design. Finally, the various viii reconfigurable mixers architectures are proposed to reconfigure the main-receiver performance according to the requirement of the selected communication standard. The down conversion mixers configurability are in the form of active/passive and Input (RF) and output (IF) bandwidth reconfigurability. All designs are simulated in 65nm CMOS technology. To validate the concept, the active/ passive reconfigurable mixer configuration is fabricated and measured. Measured result shows a conversion gain of 29.2 dB and 25.5 dB, noise figure of 7.7 dB and 10.2 dB, IIP3 of -11.9 dBm and 6.5 dBm in active and passive mode respectively. It consumes a power 9.24mW and 9.36mW in passive and active case with a bandwidth of 1 to 5.5 GHz and 0.5 to 5.1 GHz for active/passive case respectively
    corecore