12 research outputs found

    Millimeter-scale RF Integrated Circuits and Antennas for Energy-efficient Wireless Sensor Nodes

    Full text link
    Recently there has been increased demand for a millimeter-scale wireless sensor node for applications such as biomedical devices, defense, and surveillance. This form-factor is driven by a desire to be vanishingly small, injectable through a needle, or implantable through a minimally-invasive surgical procedure. Wireless communication is a necessity, but there are several challenges at the millimeter-scale wireless sensor node. One of the main challenges is external components like crystal reference and antenna become the bottleneck of realizing the mm-scale wireless sensor node device. A second challenge is power consumption of the electronics. At mm-scale, the micro-battery has limited capacity and small peak current. Moreover, the RF front-end circuits that operates at the highest frequency in the system will consume most of the power from the battery. Finally, as node volume reduces, there is a challenge of integrating the entire system together, in particular for the RF performance, because all components, including the battery and ICs, need to be placed in close proximity of the antenna. This research explores ways to implement low-power integrated circuits in an energy-constrained and volume constrained application. Three different prototypes are mainly conducted in the proposal. The first is a fully-encapsulated, autonomous, complete wireless sensor node with UWB transmitter in 10.6mm3 volume. It is the first time to demonstrate a full and stand-alone wireless sensing functionality with such a tiny integrated system. The second prototype is a low power GPS front-end receiver that supports burst-mode. A double super-heterodyne topology enables the reception of the three public GPS bands, L1, L2 and L5 simultaneously. The third prototype is an integrated rectangular slot loop antenna in a standard 0.13-ÎĽm BiCMOS technology. The antenna is efficiently designed to cover the bandwidth at 60 GHz band and easily satisfy the metal density rules and can be integrated with other circuitry in a standard process.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143972/1/hskims_1.pd

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Proceedings of the 35th WIC Symposium on Information Theory in the Benelux and the 4th joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, Eindhoven, the Netherlands May 12-13, 2014

    Get PDF
    Compressive sensing (CS) as an approach for data acquisition has recently received much attention. In CS, the signal recovery problem from the observed data requires the solution of a sparse vector from an underdetermined system of equations. The underlying sparse signal recovery problem is quite general with many applications and is the focus of this talk. The main emphasis will be on Bayesian approaches for sparse signal recovery. We will examine sparse priors such as the super-Gaussian and student-t priors and appropriate MAP estimation methods. In particular, re-weighted l2 and re-weighted l1 methods developed to solve the optimization problem will be discussed. The talk will also examine a hierarchical Bayesian framework and then study in detail an empirical Bayesian method, the Sparse Bayesian Learning (SBL) method. If time permits, we will also discuss Bayesian methods for sparse recovery problems with structure; Intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector problem

    Terahertz Technology and Its Applications

    Get PDF
    The Terahertz frequency range (0.1 – 10)THz has demonstrated to provide many opportunities in prominent research fields such as high-speed communications, biomedicine, sensing, and imaging. This spectral range, lying between electronics and photonics, has been historically known as “terahertz gap” because of the lack of experimental as well as fabrication technologies. However, many efforts are now being carried out worldwide in order improve technology working at this frequency range. This book represents a mechanism to highlight some of the work being done within this range of the electromagnetic spectrum. The topics covered include non-destructive testing, teraherz imaging and sensing, among others

    Modelling, Analysis and Design of Optimised Electronic Circuits for Visible Light Communication Systems

    Get PDF
    This thesis explores new circuit design techniques and topologies to extend the bandwidth of visible light communication (VLC) transmitters and receivers, by ameliorating the bandwidth-limiting effects of commonly used optoelectronic devices. The thesis contains detailed literature review of transmitter and receiver designs, which inspired two directions of work. The first proposes new designs of optically lossless light emitting diode (LED) bandwidth extension technique that utilises a negative capacitance circuit to offset the diode’s bandwidth-limiting capacitance. The negative capacitance circuit was studied and verified through newly developed mathematical analysis, modelling and experimental demonstration. The bandwidth advantage of the proposed technique was demonstrated through measurements in conjunction with several colour LEDs, demonstrating up to 500% bandwidth extension with no loss of optical power. The second direction of work enhances the bandwidth of VLC receivers through new designs of ultra-low input impedance transimpedance amplifiers (TIAs), designed to be insensitive to the high photodiode capacitances (Cpd) of large area detectors. Moreover, the thesis proposes a new circuit, which modifies the traditional regulated cascode (RGC) circuit to enhance its bandwidth and gain. The modified RGC amplifier efficiently treats significant RGC inherent bandwidth limitations and is shown, through mathematical analysis, modelling and experimental measurements to extend the bandwidth further by up to 200%. The bandwidth advantage of such receivers was demonstrated in measurements, using several large area photodiodes of area up to 600 mm^2, resulting in a substantial bandwidth improvement of up to 1000%, relative to a standard 50 Ω termination. An inherent limitation of large area photodiodes, associated with internal resistive elements, was identified and ameliorated, through the design of negative resistance circuits. Altogether, this research resulted in a set of design methods and practical circuits, which will hopefully contribute to wider adoption of VLC systems and may be applied in areas beyond VLC

    Low-frequency noise in downscaled silicon transistors: Trends, theory and practice

    Get PDF
    By the continuing downscaling of sub-micron transistors in the range of few to one deca-nanometers, we focus on the increasing relative level of the low-frequency noise in these devices. Large amount of published data and models are reviewed and summarized, in order to capture the state-of-the-art, and to observe that the 1/area scaling of low-frequency noise holds even for carbon nanotube devices, but the noise becomes too large in order to have fully deterministic devices with area less than 10nm×10nm. The low-frequency noise models are discussed from the point of view that the noise can be both intrinsic and coupled to the charge transport in the devices, which provided a coherent picture, and more interestingly, showed that the models converge each to other, despite the many issues that one can find for the physical origin of each model. Several derivations are made to explain crossovers in noise spectra, variable random telegraph amplitudes, duality between energy and distance of charge traps, behaviors and trends for figures of merit by device downscaling, practical constraints for micropower amplifiers and dependence of phase noise on the harmonics in the oscillation signal, uncertainty and techniques of averaging by noise characterization. We have also shown how the unavoidable statistical variations by fabrication is embedded in the devices as a spatial “frozen noise”, which also follows 1/area scaling law and limits the production yield, from one side, and from other side, the “frozen noise” contributes generically to temporal 1/f noise by randomly probing the embedded variations during device operation, owing to the purely statistical accumulation of variance that follows from cause-consequence principle, and irrespectively of the actual physical process. The accumulation of variance is known as statistics of “innovation variance”, which explains the nearly log-normal distributions in the values for low-frequency noise parameters gathered from different devices, bias and other conditions, thus, the origin of geometric averaging in low-frequency noise characterizations. At present, the many models generally coincide each with other, and what makes the difference, are the values, which, however, scatter prominently in nanodevices. Perhaps, one should make some changes in the approach to the low-frequency noise in electronic devices, to emphasize the “statistics behind the numbers”, because the general physical assumptions in each model always fail at some point by the device downscaling, but irrespectively of that, the statistics works, since the low-frequency noise scales consistently with the 1/area law

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book

    GSI Scientific Report 2014 / GSI Report 2015-1

    Get PDF
    corecore