21 research outputs found

    Uniform Strategies

    Get PDF
    We consider turn-based game arenas for which we investigate uniformity properties of strategies. These properties involve bundles of plays, that arise from some semantical motive. Typically, we can represent constraints on allowed strategies, such as being observation-based. We propose a formal language to specify uniformity properties and demonstrate its relevance by rephrasing various known problems from the literature. Note that the ability to correlate different plays cannot be achieved by any branching-time logic if not equipped with an additional modality, so-called R in this contribution. We also study an automated procedure to synthesize strategies subject to a uniformity property, which strictly extends existing results based on, say standard temporal logics. We exhibit a generic solution for the synthesis problem provided the bundles of plays rely on any binary relation definable by a finite state transducer. This solution yields a non-elementary procedure.Comment: (2012

    Une approche efficace pour l’étude de la diagnosticabilité et le diagnostic des SED modélisés par Réseaux de Petri labellisés : contextes atemporel et temporel

    Get PDF
    This PhD thesis deals with fault diagnosis of discrete event systems using Petri net models. Some on-the-fly and incremental techniques are developed to reduce the state explosion problem while analyzing diagnosability. In the untimed context, an algebraic representation for labeled Petri nets (LPNs) is developed for featuring system behavior. The diagnosability of LPN models is tackled by analyzing a series of K-diagnosability problems. Two models called respectively FM-graph and FM-set tree are developed and built on the fly to record the necessary information for diagnosability analysis. Finally, a diagnoser is derived from the FM-set tree for online diagnosis. In the timed context, time interval splitting techniques are developed in order to make it possible to generate a state representation of labeled time Petri net (LTPN) models, for which techniques from the untimed context can be used to analyze diagnosability. Based on this, necessary and sufficient conditions for the diagnosability of LTPN models are determined. Moreover, we provide the solution for the minimum delay ∆ that ensures diagnosability. From a practical point of view, diagnosability analysis is performed on the basis of on-the-fly building of a structure that we call ASG and which holds fault information about the LTPN states. Generally, using on-the-fly analysis and incremental technique makes it possible to build and investigate only a part of the state space, even in the case when the system is diagnosable. Simulation results obtained on some chosen benchmarks show the efficiency in terms of time and memory compared with the traditional approaches using state enumerationCette thèse s'intéresse à l'étude des problèmes de diagnostic des fautes sur les systèmes à événements discrets en utilisant les modèles réseau de Petri. Des techniques d'exploration incrémentale et à-la-volée sont développées pour combattre le problème de l'explosion de l'état lors de l'analyse de la diagnosticabilité. Dans le contexte atemporel, la diagnosticabilité de modèles RdP-L est abordée par l'analyse d'une série de problèmes K-diagnosticabilité. L'analyse de la diagnosticabilité est effectuée sur la base de deux modèles nommés respectivement FM-graph et FM-set tree qui sont développés à-la-volée. Un diagnostiqueur peut être dérivé à partir du FM-set tree pour le diagnostic en ligne. Dans le contexte temporel, les techniques de fractionnement des intervalles de temps sont élaborées pour développer représentation de l'espace d'état des RdP-LT pour laquelle des techniques d'analyse de la diagnosticabilité peuvent être utilisées. Sur cette base, les conditions nécessaires et suffisantes pour la diagnosticabilité de RdP-LT ont été déterminées. En pratique, l'analyse de la diagnosticabilité est effectuée sur la base de la construction à-la-volée d'une structure nommée ASG et qui contient des informations relatives à l'occurrence de fautes. D'une manière générale, l'analyse effectuée sur la base des techniques à-la-volée et incrémentale permet de construire et explorer seulement une partie de l'espace d'état, même lorsque le système est diagnosticable. Les résultats des simulations effectuées sur certains benchmarks montrent l'efficacité de ces techniques en termes de temps et de mémoire par rapport aux approches traditionnelles basées sur l'énumération des état

    The Complexity of Diagnosability and Opacity Verification for Petri Nets

    Get PDF
    International audienceDiagnosability and opacity are two well-studied problems in discrete-event systems. We revisit these two problems with respect to expressiveness and complexity issues. We first relate different notions of diagnosability and opacity. We consider in particular fairness issues and extend the definition of Germanos et al. [ACM TECS, 2015] of weakly fair diagnosability for safe Petri nets to general Petri nets and to opacity questions. Second, we provide a global picture of complexity results for the verification of diagnosability and opacity. We show that diagnosability is NL-complete for finite state systems, PSPACE-complete for safe Petri nets (even with fairness), and EXPSPACE-complete for general Petri nets without fairness, while non diagnosability is inter-reducible with reachability when fault events are not weakly fair. Opacity is ESPACE-complete for safe Petri nets (even with fairness) and undecidable for general Petri nets already without fairness

    Distributed intrusion detection for secure cooperative multi–agent systems

    Get PDF
    In this thesis we propose a solution for the problem of detecting intruders in an open set of cooperative agents. An agent can perform a finite set of maneuvers and is modeled by a hybrid system whose state is a continuous and a discrete part, representing the agents' physical evolution and logical variables, respectively. Each agent plans its behavior and chooses the appropriate maneuver to perform following a common set of shared rules designed to ensure the safety of the entire system. Since the number of agents is unknown, and since these agents have a limited knowledge of their neighborhood, they can make decisions based only on their own position, and on the configuration of a limited number of surrounding agents. Such a planning strategy is said to be decentralized. The expounded solution is an Intrusion Detecting System (IDS), based on a decentralized monitoring strategy, performed by several common local monitor modules running on--board each agent. This module tries to evaluate the behavior of neighboring agents by estimating the occurrence of the logical events described in the shared rule set. Since each monitor has a limited vision of its neighbors, in many cases it can remain uncertain about the correctness of the monitored agent's behavior. In order to solve this problem we developed a distributed consensus algorithm which, by introducing communication between agents, enhances the intrusion detection capabilities of single monitors. The effectiveness of our solution has been proved by in-depth simulations and a theoretical demonstration of the convergence of the consensus algorithm

    Robust State-Based Supervisory Control of Hierarchical Discrete-Event Systems

    Get PDF
    Model uncertainty due to unknown dynamics or changes (such as faults) must be addressed in supervisory control design. Robust supervisory control, one of the approaches to handle model uncertainty, provides a solution (i.e., supervisor) that simultaneously satisfies the design objectives of all possible known plant models. Complexity has always been a challenging issue in the supervisory control of discrete-event systems, and different methods have been proposed to mitigate it. The proposed methods aim to handle complexity either through a structured solution (e.g. decentralized supervision) or by taking advantage of computationally efficient structured models for plants (e.g., hierarchical models). One of the proposed hierarchical plant model formalisms is State-Tree-Structure (STS), which has been successfully used in supervisor design for systems containing up to 10^20 states. In this thesis, a robust supervisory control framework is developed for systems modeled by STS. First, a robust nonblocking supervisory control problem is formulated in which the plant model belongs to a finite set of automata models and design specifications are expressed in terms of state sets. A state-based approach to supervisor design is more convenient for implementation using symbolic calculation tools such as Binary Decision Diagrams (BDDs). In order to ensure that the set of solutions for robust control problem can be obtained from State Feedback Control (SFBC) laws and hence suitable for symbolic calculations, it is assumed, without loss of generality, that the plant models satisfy a mutual refinement assumption. In this thesis, a set of necessary and sufficient conditions is derived for the solvability of the robust control problem, and a procedure for finding the maximally permissive solution is obtained. Next, the robust state-based supervisory framework is extended to systems modeled by STS. A sufficient condition is provided under which the mutual refinement property can be verified without converting the hierarchical model of STS to a flat automaton model. As an illustrative example, the developed approach was successfully used to design a robust supervisor for a Flexible Manufacturing System (FMS) with a state set of order 10^8

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Quantitative Analysis of Information Leakage in Probabilistic and Nondeterministic Systems

    Get PDF
    This thesis addresses the foundational aspects of formal methods for applications in security and in particular in anonymity. More concretely, we develop frameworks for the specification of anonymity properties and propose algorithms for their verification. Since in practice anonymity protocols always leak some information, we focus on quantitative properties, which capture the amount of information leaked by a protocol. The main contribution of this thesis is cpCTL, the first temporal logic that allows for the specification and verification of conditional probabilities (which are the key ingredient of most anonymity properties). In addition, we have considered several prominent definitions of information-leakage and developed the first algorithms allowing us to compute (and even approximate) the information leakage of anonymity protocols according to these definitions. We have also studied a well-known problem in the specification and analysis of distributed anonymity protocols, namely full-information scheduling. To overcome this problem, we have proposed an alternative notion of scheduling and adjusted accordingly several anonymity properties from the literature. Our last major contribution is a debugging technique that helps on the detection of flaws in security protocols.Comment: thesis, ISBN: 978-94-91211-74-
    corecore