23,137 research outputs found

    A two-layer shallow water model for bedload sediment transport: convergence to Saint-Venant-Exner model

    Get PDF
    A two-layer shallow water type model is proposed to describe bedload sediment transport. The upper layer is filled by water and the lower one by sediment. The key point falls on the definition of the friction laws between the two layers, which are a generalization of those introduced in Fern\'andez-Nieto et al. (ESAIM: M2AN, 51:115-145, 2017). This definition allows to apply properly the two-layer shallow water model for the case of intense and slow bedload sediment transport. Moreover, we prove that the two-layer model converges to a Saint-Venant-Exner system (SVE) including gravitational effects when the ratio between the hydrodynamic and morphodynamic time scales is small. The SVE with gravitational effects is a degenerated nonlinear parabolic system. This means that its numerical approximation is very expensive from a computational point of view, see for example T. Morales de Luna et al. (J. Sci. Comp., 48(1): 258-273, 2011). In this work, gravitational effects are introduced into the two-layer system without such extra computational cost. Finally, we also consider a generalization of the model that includes a non-hydrostatic pressure correction for the fluid layer and the boundary condition at the sediment surface. Numerical tests show that the model provides promising results and behave well in low transport rate regimes as well as in many other situations

    2D granular flows with the μ(I)\mu(I) rheology and side walls friction: a well balanced multilayer discretization

    Get PDF
    We present here numerical modelling of granular flows with the μ(I)\mu(I) rheology in confined channels. The contribution is twofold: (i) a model to approximate the Navier-Stokes equations with the μ(I)\mu(I) rheology through an asymptotic analysis. Under the hypothesis of a one-dimensional flow, this model takes into account side walls friction; (ii) a multilayer discretization following Fern\'andez-Nieto et al. (J. Fluid Mech., vol. 798, 2016, pp. 643-681). In this new numerical scheme, we propose an appropriate treatment of the rheological terms through a hydrostatic reconstruction which allows this scheme to be well-balanced and therefore to deal with dry areas. Based on academic tests, we first evaluate the influence of the width of the channel on the normal profiles of the downslope velocity thanks to the multilayer approach that is intrinsically able to describe changes from Bagnold to S-shaped (and vice versa) velocity profiles. We also check the well balance property of the proposed numerical scheme. We show that approximating side walls friction using single-layer models may lead to strong errors. Secondly, we compare the numerical results with experimental data on granular collapses. We show that the proposed scheme allows us to qualitatively reproduce the deposit in the case of a rigid bed (i. e. dry area) and that the error made by replacing the dry area by a small layer of material may be large if this layer is not thin enough. The proposed model is also able to reproduce the time evolution of the free surface and of the flow/no-flow interface. In addition, it reproduces the effect of erosion for granular flows over initially static material lying on the bed. This is possible when using a variable friction coefficient μ(I)\mu(I) but not with a constant friction coefficient

    A weakly non-hydrostatic shallow model for dry granular flows

    Full text link
    A non-hydrostatic depth-averaged model for dry granular flows is proposed, taking into account vertical acceleration. A variable friction coefficient based on the μ(I)\mu(I) rheology is considered. The model is obtained from an asymptotic analysis in a local reference system, where the non-hydrostatic contribution is supposed to be small compared to the hydrostatic one. The non-hydrostatic counterpart of the pressure may be written as the sum of two terms: one corresponding to the stress tensor and the other to the vertical acceleration. The model introduced here is weakly non-hydrostatic, in the sense that the non-hydrostatic contribution related to the stress tensor is not taken into account due to its complex implementation. A simple and efficient numerical scheme is proposed. It consists of a three-step splitting procedure, and it is based on a hydrostatic reconstruction. Two key points are: (i) the friction force has to be taken into account before solving the non-hydrostatic pressure. Otherwise, the incompressibility condition is not ensured; (ii) both the hydrostatic and the non-hydrostatic pressure are taken into account when dealing with the friction force. The model and numerical scheme are then validated based on several numerical tests, including laboratory experiments of granular collapse. The influence of non-hydrostatic terms and of the choice of the coordinate system (Cartesian or local) is analyzed. We show that non-hydrostatic models are less sensitive to the choice of the coordinate system. In general, the non-hydrostatic model introduced here much better reproduces granular collapse experiments compared to hydrostatic models. An important result is that the simulated mass profiles up to the deposit and the front velocity are greatly improved. As expected, the influence of the non-hydrostatic pressure is shown to be larger for small values of the slope

    Air entrainment in transient flows in closed water pipes: a two-layer approach

    Get PDF
    In this paper, we first construct a model for free surface flows that takes into account the air entrainment by a system of four partial differential equations. We derive it by taking averaged values of gas and fluid velocities on the cross surface flow in the Euler equations (incompressible for the fluid and compressible for the gas). The obtained system is conditionally hyperbolic. Then, we propose a mathematical kinetic interpretation of this system to finally construct a two-layer kinetic scheme in which a special treatment for the "missing" boundary condition is performed. Several numerical tests on closed water pipes are performed and the impact of the loss of hyperbolicity is discussed and illustrated. Finally, we make a numerical study of the order of the kinetic method in the case where the system is mainly non hyperbolic. This provides a useful stability result when the spatial mesh size goes to zero

    A two-layer shallow flow model with two axes of integration, well-balanced discretization and application to submarine avalanches

    Get PDF
    We propose a two-layer model with two different axes of integration and a well-balanced finite volume method. The purpose is to study submarine avalanches and generated tsunamis by a depth-averaged model with different averaged directions for the fluid and the granular layers. Two-layer shallow depth-averaged models usually consider either Cartesian or local coordinates for both layers. However, the motion characteristics of the granular layer and the water wave are different: the granular flow velocity is mainly oriented downslope while water motion related to tsunami wave propagation is mostly horizontal. As a result, the shallow approximation and depth-averaging have to be imposed (i) in the direction normal to the topography for the granular flow and (ii) in the vertical direction for the water layer. To deal with this problem, we define a reference plane related to topography variations and use the associated local coordinates to derive the granular layer equations whereas Cartesian coordinates are used for the fluid layer. Depthaveraging is done orthogonally to that reference plane for the granular layer equations and in the vertical direction for the fluid layer equations. Then, a finite volume method is defined based on an extension of the hydrostatic reconstruction. The proposed method is exactly well-balanced for two kind of stationary solutions: the classical one, when both water and granular masses are at rest; the second one, when only the granular mass is at rest. Several tests are presented to get insight into the sensitivity of the granular flow, deposit and generated water waves to the choice of the coordinate systems. Our results show that even for moderate slopes (up to 30◦), strong relative errors on the avalanche dynamics and deposit (up to 60%) and on the generated water waves (up to 120%) are made when using Cartesian coordinates for both layers instead of an appropriate local coordinate system as proposed here.Ministerio de Economía y Competitividad (MINECO). EspañaEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)Agence Nationale de la Recherche. FranceEuropean Research Council (ERC

    Layer-averaged Euler and Navier-Stokes equations

    Get PDF
    In this paper we propose a strategy to approximate incompressible hydrostatic free surface Euler and Navier-Stokes models. The main advantage of the proposed models is that the water depth is a dynamical variable of the system and hence the model is formulated over a fixed domain.The proposed strategy extends previous works approximating the Euler and Navier-Stokes systems using a multilayer description. Here, the needed closure relations are obtained using an energy-based optimality criterion instead of an asymptotic expansion. Moreover, the layer-averaged description is successfully applied to the Navier-Stokes system with a general form of the Cauchy stress tensor

    Liquid-gas-solid flows with lattice Boltzmann: Simulation of floating bodies

    Full text link
    This paper presents a model for the simulation of liquid-gas-solid flows by means of the lattice Boltzmann method. The approach is built upon previous works for the simulation of liquid-solid particle suspensions on the one hand, and on a liquid-gas free surface model on the other. We show how the two approaches can be unified by a novel set of dynamic cell conversion rules. For evaluation, we concentrate on the rotational stability of non-spherical rigid bodies floating on a plane water surface - a classical hydrostatic problem known from naval architecture. We show the consistency of our method in this kind of flows and obtain convergence towards the ideal solution for the measured heeling stability of a floating box.Comment: 22 pages, Preprint submitted to Computers and Mathematics with Applications Special Issue ICMMES 2011, Proceedings of the Eighth International Conference for Mesoscopic Methods in Engineering and Scienc
    • …
    corecore