53 research outputs found

    Effects of structure on flow mechanics in the human left ventricle and respiratory tract

    Get PDF
    2011 Summer.Includes bibliographical references.Cardiac and respiratory dysfunctions represent a large portion of healthcare problems in the United States. Many of these problems are caused by abnormal flow mechanics due to altered anatomical structure. This structure in the human body is very complex and ranges over many different scales. At relatively small scales, one facet that is still not well understood is the role of trabeculae on the biomechanics of the left ventricle. Similarly, large-scale airflow through the respiratory tract has not been fully investigated as a function of age or mechanical ventilation. This research has revealed some of the flow patterns caused by these different scale structures. Fractal geometry was used to help characterize the inner surface of the left ventricle at different times during the cardiac cycle. The fractal dimension of the ventricle was determined using a custom box-counting algorithm developed in MATLAB, and it was shown that trabeculae do indeed play a role in the biomechanics of heart pumping. Computational fluid dynamics (CFD) was also run on the respiratory tracts of three different patients to determine airflow effects due to age and intubation. Three dimensional models were constructed from computed tomography (CT) scans and simulations were run in ANSYS Fluent. Results of the study were validated through grid and time step sensitivity studies as well as comparison to previous studies. It was shown that flow mechanics in the airways of children change with age as well as with the introduction of an intubation tube

    Improved 3D MR Image Acquisition and Processing in Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common type of birth defect, affecting about 1% of the population. MRI is an essential tool in the assessment of CHD, including diagnosis, intervention planning and follow-up. Three-dimensional MRI can provide particularly rich visualization and information. However, it is often complicated by long scan times, cardiorespiratory motion, injection of contrast agents, and complex and time-consuming postprocessing. This thesis comprises four pieces of work that attempt to respond to some of these challenges. The first piece of work aims to enable fast acquisition of 3D time-resolved cardiac imaging during free breathing. Rapid imaging was achieved using an efficient spiral sequence and a sparse parallel imaging reconstruction. The feasibility of this approach was demonstrated on a population of 10 patients with CHD, and areas of improvement were identified. The second piece of work is an integrated software tool designed to simplify and accelerate the development of machine learning (ML) applications in MRI research. It also exploits the strengths of recently developed ML libraries for efficient MR image reconstruction and processing. The third piece of work aims to reduce contrast dose in contrast-enhanced MR angiography (MRA). This would reduce risks and costs associated with contrast agents. A deep learning-based contrast enhancement technique was developed and shown to improve image quality in real low-dose MRA in a population of 40 children and adults with CHD. The fourth and final piece of work aims to simplify the creation of computational models for hemodynamic assessment of the great arteries. A deep learning technique for 3D segmentation of the aorta and the pulmonary arteries was developed and shown to enable accurate calculation of clinically relevant biomarkers in a population of 10 patients with CHD

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Computational modelling of diffusion magnetic resonance imaging based on cardiac histology

    Get PDF
    The exact relationship between changes in myocardial microstructure as a result of heart disease and the signal measured using diffusion tensor cardiovascular magnetic resonance (DT-CMR) is currently not well understood. Computational modelling of diffusion in combination with realistic numerical phantoms offers the unique opportunity to study effects of pathologies or the efficacy of improvements to acquisition protocols in a controlled in-silico environment. In this work, Monte Carlo random walk (MCRW) methods are used to simulate diffusion in a histology-based 3D model of the myocardium. Sensitivity of typical DT-CMR sequences to changes in tissue properties is assessed. First, myocardial tissue is analysed to identify important geometric features and diffusion parameters. A two-compartment model is considered where intra-cellular compartments with a reduced bulk diffusion coefficient are separated from extra-cellular space by permeable membranes. Secondary structures like groups of cardiomyocyte (sheetlets) must also be included, and different methods are developed to automatically generate realistic histology-based substrates. Next, in-silico simulation of DT-CMR is reviewed and a tool to generate idealised versions of common pulse sequences is discussed. An efficient GPU-based numerical scheme for obtaining a continuum solution to the Bloch--Torrey equations is presented and applied to domains directly extracted from histology images. In order to verify the numerical methods used throughout this work, an analytical solution to the diffusion equation in 1D is described. It relies on spectral analysis of the diffusion operator and requires that all roots of a complex transcendental equation are found. To facilitate a fast and reliable solution, a novel root finding algorithm based on Chebyshev polynomial interpolation is proposed. To simulate realistic 3D geometries MCRW methods are employed. A parallel simulator for both grid-based and surface mesh--based geometries is presented. The presence of permeable membranes requires special treatment. For this, a commonly used transit model is analysed. Finally, the methods above are applied to study the effect of various model and sequence parameters on DT-CMR results. Simulations with impermeable membranes reveal sequence-specific sensitivity to extra-cellular volume fraction and diffusion coefficients. By including membrane permeability, DT-CMR results further approach values expected in vivo.Open Acces

    Lattice Boltzmann Methods for Particulate Flows with Medical and Technical Applications

    Get PDF
    Particulate flows appear in numerous medical and technical applications. The main aim of this thesis is to contribute models and numerical schemes towards an accurate as well as efficient simulation of a huge number of arbitrarily shaped particles. We therefore develop holistic mesoscopic models and simulation approaches using the Lattice Boltzmann Method, that on massively parallel machines efficiently solve a variety of problems of particulate flows

    Mixed integer programming on transputers

    Get PDF
    Mixed Integer Programming (MIP) problems occur in many industries and their practical solution can be challenging in terms of both time and effort. Although faster computer hardware has allowed the solution of more MIP problems in reasonable times, there will come a point when the hardware cannot be speeded up any more. One way of improving the solution times of MIP problems without further speeding up the hardware is to improve the effectiveness of the solution algorithm used. The advent of accessible parallel processing technology and techniques provides the opportunity to exploit any parallelism within MIP solving algorithms in order to accelerate the solution of MIP problems. Many of the MIP problem solving algorithms in the literature contain a degree of exploitable parallelism. Several algorithms were considered as candidates for parallelisation within the constraints imposed by the currently available parallel hardware and techniques. A parallel Branch and Bound algorithm was designed for and implemented on an array of transputers hosted by a PC. The parallel algorithm was designed to operate as a process farm, with a master passing work to various slave processors. A message-passing harness was developed to allow full control of the slaves and the work sent to them. The effects of using various node selection techniques were studied and a default node selection strategy decided upon for the parallel algorithm. The parallel algorithm was also designed to take full advantage of the structure of MIP problems formulated using global entities such as general integers and special ordered sets. The presence of parallel processors makes practicable the idea of performing more than two branches on an unsatisfied global entity. Experiments were carried out using multiway branching strategies and a default branching strategy decided upon for appropriate types of MIP problem
    corecore