328 research outputs found

    Higher Width Moonshine

    Full text link
    \textit{Weak moonshine} for a finite group GG is the phenomenon where an infinite dimensional graded GG-module VG=nVG(n)V_G=\bigoplus_{n\gg-\infty}V_G(n) has the property that its trace functions, known as McKay-Thompson series, are modular functions. Recent work by DeHority, Gonzalez, Vafa, and Van Peski established that weak moonshine holds for every finite group. Since weak moonshine only relies on character tables, which are not isomorphism class invariants, non-isomorphic groups can have the same McKay-Thompson series. We address this problem by extending weak moonshine to arbitrary width sZ+s\in\mathbb{Z}^+. For each 1rs1\leq r\leq s and each irreducible character χi\chi_i, we employ Frobenius' rr-character extension χi(r) ⁣:G(r)C\chi_i^{(r)} \colon G^{(r)}\rightarrow\mathbb{C} to define \textit{width rr McKay-Thompson series} for VG(r):=VG××VGV_G^{(r)}:=V_G\times\cdots\times V_G (rr copies) for each rr-tuple in G(r):=G××GG^{(r)}:=G\times\cdots\times G (rr copies). These series are modular functions which then reflect differences between rr-character values. Furthermore, we establish orthogonality relations for the Frobenius rr-characters, which dictate the compatibility of the extension of weak moonshine for VGV_G to width ss weak moonshine.Comment: Versions 2 and 3 address comments from the referee

    Branes, Anti-Branes and Brauer Algebras in Gauge-Gravity duality

    Full text link
    We propose gauge theory operators built using a complex Matrix scalar which are dual to brane-anti-brane systems in AdS5×S5AdS_5 \times S^5 , in the zero coupling limit of the dual Yang-Mills. The branes involved are half-BPS giant gravitons. The proposed operators dual to giant-anti-giant configurations satisfy the appropriate orthogonality properties. Projection operators in Brauer algebras are used to construct the relevant multi-trace Matrix operators. These are related to the ``coupled representations'' which appear in 2D Yang-Mills theory. We discuss the implications of these results for the quantum mechanics of a complex matrix model, the counting of non-supersymmetric operators and the physics of brane-anti-brane systems. The stringy exclusion principle known from the properties of half-BPS giant gravitons, has a new incarnation in this context. It involves a qualitative change in the map between brane-anti-brane states to gauge theory operators. In the case of a pair of sphere giant and anti-giant this change occurs when the sum of the magnitudes of their angular momenta reaches NN.Comment: 52 pages, 10 figure

    Set-partition tableaux and representations of diagram algebras

    Get PDF
    The partition algebra is an associative algebra with a basis of set-partition diagrams and multiplication given by diagram concatenation. It contains as subalgebras a large class of diagram algebras including the Brauer, planar partition, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, planar rook monoid, and symmetric group algebras. We give a construction of the irreducible modules of these algebras in two isomorphic ways: first, as the span of symmetric diagrams on which the algebra acts by conjugation twisted with an irreducible symmetric group representation and, second, on a basis indexed by set-partition tableaux such that diagrams in the algebra act combinatorially on tableaux. The first representation is analogous to the Gelfand model and the second is a generalization of Young's natural representation of the symmetric group on standard tableaux. The methods of this paper work uniformly for the partition algebra and its diagram subalgebras. As an application, we express the characters of each of these algebras as nonnegative integer combinations of symmetric group characters whose coefficients count fixed points under conjugation

    Seminormal forms and Gram determinants for cellular algebras

    Get PDF
    This paper develops an abstract framework for constructing ``seminormal forms'' for cellular algebras. That is, given a cellular R-algebra A which is equipped with a family of JM-elements we give a general technique for constructing orthogonal bases for A, and for all of its irreducible representations, when the JM-elements separate A. The seminormal forms for A are defined over the field of fractions of R. Significantly, we show that the Gram determinant of each irreducible A-module is equal to a product of certain structure constants coming from the seminormal basis of A. In the non-separated case we use our seminormal forms to give an explicit basis for a block decomposition of A. The appendix, by Marcos Soriano, gives a general construction of a complete set of orthogonal idempotents for an algera starting from a set of elements which act on the algebra in an upper triangular fashion. The appendix shows that constructions with "Jucys-Murphy elements"depend, ultimately, on the Cayley-Hamilton theorem.Comment: Final version. To appear J. Reine Angew. Math. Appendix by Marcos Sorian
    corecore