50 research outputs found

    Long distance free-space quantum key distribution

    Get PDF
    In the age of information and globalisation, secure communication as well as the protection of sensitive data against unauthorised access are of utmost importance. Quantum cryptography currently provides the only way to exchange a cryptographic key between two parties in an unconditionally secure fashion. Owing to losses and noise of today's optical fibre and detector technology, at present quantum cryptography is limited to distances below a few 100 km. In principle, larger distances could be subdivided into shorter segments, but the required quantum repeaters are still beyond current technology. An alternative approach for bridging larger distances is a satellite-based system, that would enable secret key exchange between two arbitrary points on the globe using free-space optical communication. The aim of the presented experiment was to investigate the feasibility of satellite-based global quantum key distribution. In this context, a free-space quantum key distribution experiment over a real distance of 144 km was performed. The transmitter and the receiver were situated in 2500 m altitude on the Canary Islands of La Palma and Tenerife, respectively. The small and compact transmitter unit generated attenuated laser pulses, that were sent to the receiver via a 15-cm optical telescope. The receiver unit for polarisation analysis and detection of the sent pulses was integrated into an existing mirror telescope designed for classical optical satellite communications. To ensure the required stability and efficiency of the optical link in the presence of atmospheric turbulence, the two telescopes were equipped with a bi-directional automatic tracking system. Still, due to stray light and high optical attenuation, secure key exchange would not be possible using attenuated pulses in connection with the standard BB84 protocol. The photon number statistics of attenuated pulses follows a Poissonian distribution. Hence, by removing a photon from all pulses containing two or more photons, an eavesdropper could measure its polarisation without disturbing the polarisation state of the remaining pulse. In this way, he can gain information about the key without introducing detectable errors. To protect against such attacks, the presented experiment employed the recently developed method of using additional "decoy" states, i.e., the the intensity of the pulses created by the transmitter were varied in a random manner. By analysing the detection probabilities of the different pulses individually, a photon-number-splitting attack can be detected. Thanks to the decoy-state analysis, the secrecy of the resulting quantum key could be ensured despite the Poissonian nature of the emitted pulses. For a channel attenuation as high as 35 dB, a secret key rate of up to 250 bit/s was achieved. Our outdoor experiment was carried out under real atmospheric conditions and with a channel attenuation comparable to an optical link from ground to a satellite in low earth orbit. Hence, it definitely shows the feasibility of satellite-based quantum key distribution using a technologically comparatively simple system

    LHCb Particle Identification Upgrade: Technical Design Report

    Get PDF
    The LHCb upgrade will take place in the second long shutdown of the LHC, currently scheduled to begin in 2018. The upgrade will enable the experiment to run at luminosities of 2 x 10^33 cm^-2 s^-1 and will read out data at a rate of 40MHz into a exible software-based trigger. All sub-detectors of LHCb will be re-designed to comply with these new operating conditions. This Technical Design Report presents the upgrade plans of the Ring Imaging Cherenkov (RICH) system, the calorimeter system and the muon system, which together provide the particle identication capabilities of the experiment

    Strategies of development and maintenance in supervision, control, synchronization, data acquisition and processing in light sources

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e as Comunicacións. 5032V01[Resumo] Os aceleradores de partículas e fontes de luz sincrotrón, evolucionan constantemente para estar na vangarda da tecnoloxía, levando os límites cada vez mais lonxe para explorar novos dominios e universos. Os sistemas de control son unha parte crucial desas instalacións científicas e buscan logra-la flexibilidade de manobra para poder facer experimentos moi variados, con configuracións diferentes que engloban moitos tipos de detectores, procedementos, mostras a estudar e contornas. As propostas de experimento son cada vez máis ambiciosas e van sempre un paso por diante do establecido. Precísanse detectores cada volta máis rápidos e eficientes, con máis ancho de banda e con máis resolución. Tamén é importante a operación simultánea de varios detectores tanto escalares como mono ou bidimensionáis, con mecanismos de sincronización de precisión que integren as singularidades de cada un. Este traballo estuda as solucións existentes no campo dos sistemas de control e adquisición de datos nos aceleradores de partículas e fontes de luz e raios X, ó tempo que explora novos requisitos e retos no que respecta á sincronización e velocidade de adquisición de datos para novos experimentos, a optimización do deseño, soporte, xestión de servizos e custos de operación. Tamén se estudan diferentes solucións adaptadas a cada contorna.[Resumen] Los aceleradores de partículas y fuentes de luz sincrotrón, evolucionan constantemente para estar en la vanguardia de la tecnología, y poder explorar nuevos dominios. Los sistemas de control son una parte fundamental de esas instalaciones científicas y buscan lograr la máxima flexibilidad para poder llevar a cabo experimentos más variados, con configuraciones diferentes que engloban varios tipos de detectores, procedimientos, muestras a estudiar y entornos. Los experimentos se proponen cada vez más ambiciosos y en ocasiones más allá de los límites establecidos. Se necesitan detectores cada vez más rápidos y eficientes, con más resolución y ancho de banda, que puedan sincronizarse simultáneamente con otros detectores tanto escalares como mono y bidimensionales, integrando las singularidades de cada uno y homogeneizando la adquisición de datos. Este trabajo estudia los sistemas de control y adquisición de datos de aceleradores de partículas y fuentes de luz y rayos X, y explora nuevos requisitos y retos en lo que respecta a la sincronización y velocidad de adquisición de datos, optimización y costo-eficiencia en el diseño, operación soporte, mantenimiento y gestión de servicios. También se estudian diferentes soluciones adaptadas a cada entorno.[Abstract] Particle accelerators and photon sources are constantly evolving, attaining the cutting-edge technologies to push the limits forward and explore new domains. The control systems are a crucial part of these installations and are required to provide flexible solutions to the new challenging experiments, with different kinds of detectors, setups, sample environments and procedures. Experiment proposals are more and more ambitious at each call and go often a step beyond the capabilities of the instrumentation. Detectors shall be faster, with higher efficiency, more resolution, more bandwidth and able to synchronize with other detectors of all kinds; scalars, one or two-dimensional, taking into account their singularities and homogenizing the data acquisition. This work examines the control and data acquisition systems for particle accelerators and X- ray / light sources and explores new requirements and challenges regarding synchronization and data acquisition bandwidth, optimization and cost-efficiency in the design / operation / support. It also studies different solutions depending on the environment

    Color Image Processing based on Graph Theory

    Full text link
    [ES] La visión artificial es uno de los campos en mayor crecimiento en la actualidad que, junto con otras tecnologías como la Biometría o el Big Data, se ha convertido en el foco de interés de numerosas investigaciones y es considerada como una de las tecnologías del futuro. Este amplio campo abarca diversos métodos entre los que se encuentra el procesamiento y análisis de imágenes digitales. El éxito del análisis de imágenes y otras tareas de procesamiento de alto nivel, como pueden ser el reconocimiento de patrones o la visión 3D, dependerá en gran medida de la buena calidad de las imágenes de partida. Hoy en día existen multitud de factores que dañan las imágenes dificultando la obtención de imágenes de calidad óptima, esto ha convertido el (pre-) procesamiento digital de imágenes en un paso fundamental previo a la aplicación de cualquier otra tarea de procesado. Los factores más comunes son el ruido y las malas condiciones de adquisición: los artefactos provocados por el ruido dificultan la interpretación adecuada de la imagen y la adquisición en condiciones de iluminación o exposición deficientes, como escenas dinámicas, causan pérdida de información de la imagen que puede ser clave para ciertas tareas de procesamiento. Los pasos de (pre-)procesamiento de imágenes conocidos como suavizado y realce se aplican comúnmente para solventar estos problemas: El suavizado tiene por objeto reducir el ruido mientras que el realce se centra en mejorar o recuperar la información imprecisa o dañada. Con estos métodos conseguimos reparar información de los detalles y bordes de la imagen con una nitidez insuficiente o un contenido borroso que impide el (post-)procesamiento óptimo de la imagen. Existen numerosos métodos que suavizan el ruido de una imagen, sin embargo, en muchos casos el proceso de filtrado provoca emborronamiento en los bordes y detalles de la imagen. De igual manera podemos encontrar una enorme cantidad de técnicas de realce que intentan combatir las pérdidas de información, sin embargo, estas técnicas no contemplan la existencia de ruido en la imagen que procesan: ante una imagen ruidosa, cualquier técnica de realce provocará también un aumento del ruido. Aunque la idea intuitiva para solucionar este último caso será el previo filtrado y posterior realce, este enfoque ha demostrado no ser óptimo: el filtrado podrá eliminar información que, a su vez, podría no ser recuperable en el siguiente paso de realce. En la presente tesis doctoral se propone un modelo basado en teoría de grafos para el procesamiento de imágenes en color. En este modelo, se construye un grafo para cada píxel de tal manera que sus propiedades permiten caracterizar y clasificar dicho pixel. Como veremos, el modelo propuesto es robusto y capaz de adaptarse a una gran variedad de aplicaciones. En particular, aplicamos el modelo para crear nuevas soluciones a los dos problemas fundamentales del procesamiento de imágenes: suavizado y realce. Se ha estudiado el modelo en profundidad en función del umbral, parámetro clave que asegura la correcta clasificación de los píxeles de la imagen. Además, también se han estudiado las posibles características y posibilidades del modelo que nos han permitido sacarle el máximo partido en cada una de las posibles aplicaciones. Basado en este modelo se ha diseñado un filtro adaptativo capaz de eliminar ruido gaussiano de una imagen sin difuminar los bordes ni perder información de los detalles. Además, también ha permitido desarrollar un método capaz de realzar los bordes y detalles de una imagen al mismo tiempo que se suaviza el ruido presente en la misma. Esta aplicación simultánea consigue combinar dos operaciones opuestas por definición y superar así los inconvenientes presentados por el enfoque en dos etapas.[CA] La visió artificial és un dels camps en major creixement en l'actualitat que, junt amb altres tecnlogies com la Biometria o el Big Data, s'ha convertit en el focus d'interés de nombroses investigacions i és considerada com una de les tecnologies del futur. Aquest ampli camp comprén diversos m`etodes entre els quals es troba el processament digital d'imatges i anàlisis d'imatges digitals. L'èxit de l'anàlisis d'imatges i altres tasques de processament d'alt nivell, com poden ser el reconeixement de patrons o la visió 3D, dependrà en gran manera de la bona qualitat de les imatges de partida. Avui dia existeixen multitud de factors que danyen les imatges dificultant l'obtenció d'imatges de qualitat òptima, açò ha convertit el (pre-) processament digital d'imatges en un pas fonamental previa la l'aplicació de qualsevol altra tasca de processament. Els factors més comuns són el soroll i les males condicions d'adquisició: els artefactes provocats pel soroll dificulten la inter- pretació adequada de la imatge i l'adquisició en condicions d'il·luminació o exposició deficients, com a escenes dinàmiques, causen pèrdua d'informació de la imatge que pot ser clau per a certes tasques de processament. Els passos de (pre-) processament d'imatges coneguts com suavitzat i realç s'apliquen comunament per a resoldre aquests problemes: El suavitzat té com a objecte reduir el soroll mentres que el real se centra a millorar o recuperar la informació imprecisa o danyada. Amb aquests mètodes aconseguim reparar informació dels detalls i bords de la imatge amb una nitidesa insuficient o un contingut borrós que impedeix el (post-)processament òptim de la imatge. Existeixen nombrosos mètodes que suavitzen el soroll d'una imatge, no obstant això, en molts casos el procés de filtrat provoca emborronamiento en els bords i detalls de la imatge. De la mateixa manera podem trobar una enorme quantitat de tècniques de realç que intenten combatre les pèrdues d'informació, no obstant això, aquestes tècniques no contemplen l'existència de soroll en la imatge que processen: davant d'una image sorollosa, qualsevol tècnica de realç provocarà també un augment del soroll. Encara que la idea intuïtiva per a solucionar aquest últim cas seria el previ filtrat i posterior realç, aquest enfocament ha demostrat no ser òptim: el filtrat podria eliminar informació que, al seu torn, podria no ser recuperable en el seguënt pas de realç. En la present Tesi doctoral es proposa un model basat en teoria de grafs per al processament d'imatges en color. En aquest model, es construïx un graf per a cada píxel de tal manera que les seues propietats permeten caracteritzar i classificar el píxel en quëstió. Com veurem, el model proposat és robust i capaç d'adaptar-se a una gran varietat d'aplicacions. En particular, apliquem el model per a crear noves solucions als dos problemes fonamentals del processament d'imatges: suavitzat i realç. S'ha estudiat el model en profunditat en funció del llindar, paràmetre clau que assegura la correcta classificació dels píxels de la imatge. A més, també s'han estudiat les possibles característiques i possibilitats del model que ens han permés traure-li el màxim partit en cadascuna de les possibles aplicacions. Basat en aquest model s'ha dissenyat un filtre adaptatiu capaç d'eliminar soroll gaussià d'una imatge sense difuminar els bords ni perdre informació dels detalls. A més, també ha permés desenvolupar un mètode capaç de realçar els bords i detalls d'una imatge al mateix temps que se suavitza el soroll present en la mateixa. Aquesta aplicació simultània aconseguix combinar dues operacions oposades per definició i superar així els inconvenients presentats per l'enfocament en dues etapes.[EN] Computer vision is one of the fastest growing fields at present which, along with other technologies such as Biometrics or Big Data, has become the focus of interest of many research projects and it is considered one of the technologies of the future. This broad field includes a plethora of digital image processing and analysis tasks. To guarantee the success of image analysis and other high-level processing tasks as 3D imaging or pattern recognition, it is critical to improve the quality of the raw images acquired. Nowadays all images are affected by different factors that hinder the achievement of optimal image quality, making digital image processing a fundamental step prior to the application of any other practical application. The most common of these factors are noise and poor acquisition conditions: noise artefacts hamper proper image interpretation of the image; and acquisition in poor lighting or exposure conditions, such as dynamic scenes, causes loss of image information that can be key for certain processing tasks. Image (pre-) processing steps known as smoothing and sharpening are commonly applied to overcome these inconveniences: Smoothing is aimed at reducing noise and sharpening at improving or recovering imprecise or damaged information of image details and edges with insufficient sharpness or blurred content that prevents optimal image (post-)processing. There are many methods for smoothing the noise in an image, however in many cases the filtering process causes blurring at the edges and details of the image. Besides, there are also many sharpening techniques, which try to combat the loss of information due to blurring of image texture and need to contemplate the existence of noise in the image they process. When dealing with a noisy image, any sharpening technique may amplify the noise. Although the intuitive idea to solve this last case would be the previous filtering and later sharpening, this approach has proved not to be optimal: the filtering could remove information that, in turn, may not be recoverable in the later sharpening step. In the present PhD dissertation we propose a model based on graph theory for color image processing from a vector approach. In this model, a graph is built for each pixel in such a way that its features allow to characterize and classify the pixel. As we will show, the model we proposed is robust and versatile: potentially able to adapt to a variety of applications. In particular, we apply the model to create new solutions for the two fundamentals problems in image processing: smoothing and sharpening. To approach high performance image smoothing we use the proposed model to determine if a pixel belongs to a at region or not, taking into account the need to achieve a high-precision classification even in the presence of noise. Thus, we build an adaptive soft-switching filter by employing the pixel classification to combine the outputs from a filter with high smoothing capability and a softer one to smooth edge/detail regions. Further, another application of our model allows to use pixels characterization to successfully perform a simultaneous smoothing and sharpening of color images. In this way, we address one of the classical challenges within the image processing field. We compare all the image processing techniques proposed with other state-of-the-art methods to show that they are competitive both from an objective (numerical) and visual evaluation point of view.Pérez Benito, C. (2019). Color Image Processing based on Graph Theory [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/123955TESI

    Cosmology through gravitational lenses

    Get PDF
    In dieser Dissertation nutze ich den Gravitationslinseneffekt, um eine Reihe von kosmologischen Fragen zu untersuchen. Der Laufzeitunterschied des Gravitationslinsensystems HE1104-1805 wurde mit unterschiedlichen Methoden bestimmt. Zwischen den beiden Komponenten erhalte ich einen Unterschied von Delta_t(A-B) = -310 +-20 Tagen (2 sigma Konfidenzintervall). Außerdem nutze ich eine dreijährige Beobachtungskampagne, um den Doppelquasar Q0957+561 zu untersuchen. Die beobachteten Fluktuationen in den Differenzlichtkurven lassen sich durch Rauschen erklären, ein Mikrogravitationslinseneffekt wird zur Erklärung nicht benötigt...thesi

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Understanding Blazar emission through multifrequency observations.

    Get PDF
    The heart of this thesis is the study of the multifrequency behaviour of a very special family of active galactic nuclei (AGNs) called blazars. The emission of these sources is generally dominated by non-thermal radiation from a plasma jet, making them the best candidates to investigate the properties of jets in AGNs. We present an analysis of the flux and broad-band spectral variability of these objects from radio to the gamma-rays. The radio, optical and near-infrared data were mostly obtained thanks to the Whole Earth Blazar Telescope (WEBT) Collaboration and Steward Observatory blazar spectropolarimetric monitoring, while high-energy data come from space observatories. In particular, ultraviolet and X-ray data were taken from Swift and gamma-ray data from Fermi. We produce multifrequency light curves that allow us to investigate the variability properties of these objects on different time scales, the correlation between flux changes in the different bands and possible time delays. From these results we infer which are the most plausible physical mechanisms for blazar emission and the jet structure, in particular where the emission is located and the jet possible curvature. From this collection of multifrequency data we can determine the energy spectral distribution (SED). Observing simultaneously at different frequencies and in different brightness states, we can detect whether there are emission contributions that are not coming from the jet, but from the AGN nucleus. In some cases we are able to observe activity states in which emission might flow from the accretion disk, while in other ones it comes from the disk after reprocessing by fast-moving gas clouds around the accretion disk, known as broad line region (BLR). The detection of the accretion disk and/or BLR emission is very important because it helps us to understand the relation between the blazars and the other types of AGNs. This is a challenging topic since very high-quality data are needed, especially at ultraviolet frequencies, i.e. in a spectral region strongly affected by Galactic absorption. Once we have built light curves and SEDs we use them to test different jet models proposed to describe blazar emission. We know that the blazar emission at low energies is synchrothron radiation produced by relativistic electrons moving in a magnetic field. The radiation at high energies is likely produced by an inverse Compton process, where soft photons are scattered by the same relativistic electrons. However, the origin of these photons is still under discussion. As for the variability mechanisms, particle injection, acceleration and cooling are likely at work, together with shocks propagating along the jet and orientation effects in curved and dynamic jets. Recently, a lot of observing effort has been devoted in providing polarimetric data in order to obtain information on the behaviour of the magnetic field. We analyze a wide dataset of polarimetric data on several blazars to identify characteristic properties. We found a variety of behaviours, some of them ordered but the majority of them resulting in a chaotic trend, so that a simple and all-inclusive explanation is not possible. Indeed, it is very likely that turbulence affects the magnetic field most of the time. All the above issues are still matter of debate and are expected to provide a wide research field to explore for many years
    corecore