1,118 research outputs found

    Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area : a comparative study

    Get PDF
    A digital surface model (DSM) extracted from stereoscopic aerial images, acquired in March 2000, is compared with a DSM derived from airborne light detection and ranging (lidar) data collected in July 2009. Three densely built-up study areas in the city centre of Ghent, Belgium, are selected, each covering approximately 0.4 km(2). The surface models, generated from the two different 3D acquisition methods, are compared qualitatively and quantitatively as to what extent they are suitable in modelling an urban environment, in particular for the 3D reconstruction of buildings. Then the data sets, which are acquired at two different epochs t(1) and t(2), are investigated as to what extent 3D (building) changes can be detected and modelled over the time interval. A difference model, generated by pixel-wise subtracting of both DSMs, indicates changes in elevation. Filters are proposed to differentiate 'real' building changes from false alarms provoked by model noise, outliers, vegetation, etc. A final 3D building change model maps all destructed and newly constructed buildings within the time interval t(2) - t(1). Based on the change model, the surface and volume of the building changes can be quantified

    A weighted least squares solution for space intersection of spaceborne stereo SAR data

    Get PDF
    The use of stereoscopic SAR images offers an alternative to interferometric SAR for the generation of digital elevation models (DEMs). The stereo radargrammetric method is robust and can generate DEMs of sufficient accuracy to geocode SAR images. Previous work has shown that ground coordinates with accuracy of four times the resolution cell can be obtained from ERS data without using any ground control points (GCPs), where the high accuracy of the orbit and satellite position of the order of metres introduce insignificant errors into the intersection procedure. The orbit data for RADARSAT is not as accurate as that for ERS, and the perpendicular relationship between the resultant velocity vector and the resultant range vector is uncertain in terms of image geometry. Hence, it is necessary to refine the method to allow for possible errors. This paper introduces a weighted space intersection algorithm based on an analysis of the predicted errors. A radargrammetric error model for observation errors is also formulated to predict the accuracy of the algorithm. The revised method can be used without any GCPs, but this can lead to systematic errors due to less accurate orbit data, and it has been found that the use of two GCPs provides a reasonable solution. The method is insensitive to the spatial distribution of GCPs, which is often critical in traditional methods. The error statistics of the results generated from 32 independent check points, distributed through the entire SAR image, approach the predicted errors and give positional accuracy of 38 m in three dimensions

    MISR stereoscopic image matchers: techniques and results

    Get PDF
    The Multi-angle Imaging SpectroRadiometer (MISR) instrument, launched in December 1999 on the NASA EOS Terra satellite, produces images in the red band at 275-m resolution, over a swath width of 360 km, for the nine camera angles 70.5/spl deg/, 60/spl deg/, 45.6/spl deg/, and 26.1/spl deg/ forward, nadir, and 26.1/spl deg/, 45.6/spl deg/, 60/spl deg/, and 70.5/spl deg/ aft. A set of accurate and fast algorithms was developed for automated stereo matching of cloud features to obtain cloud-top height and motion over the nominal six-year lifetime of the mission. Accuracy and speed requirements necessitated the use of a combination of area-based and feature-based stereo-matchers with only pixel-level acuity. Feature-based techniques are used for cloud motion retrieval with the off-nadir MISR camera views, and the motion is then used to provide a correction to the disparities used to measure cloud-top heights which are derived from the innermost three cameras. Intercomparison with a previously developed "superstereo" matcher shows that the results are very comparable in accuracy with much greater coverage and at ten times the speed. Intercomparison of feature-based and area-based techniques shows that the feature-based techniques are comparable in accuracy at a factor of eight times the speed. An assessment of the accuracy of the area-based matcher for cloud-free scenes demonstrates the accuracy and completeness of the stereo-matcher. This trade-off has resulted in the loss of a reliable quality metric to predict accuracy and a slightly high blunder rate. Examples are shown of the application of the MISR stereo-matchers on several difficult scenes which demonstrate the efficacy of the matching approach

    Stanford automatic photogrammetry research

    Get PDF
    A feasibility study on the problem of computer automated aerial/orbital photogrammetry is documented. The techniques investigated were based on correlation matching of small areas in digitized pairs of stereo images taken from high altitude or planetary orbit, with the objective of deriving a 3-dimensional model for the surface of a planet

    Detecting Buildings and Roof Segments by Combining LIDAR Data and Multispectral Images

    Get PDF
    A method for the automatic detection of buildings and their roof planes from LIDAR data and multispectral images is presented. For building detection, a classification technique is applied in a hierarchic way to overcome the problems encountered in areas of heterogeneous appearance of buildings. The detection of roof planes is based on a region growing algorithm applied to the LIDAR data, the seed regions detected by a grey-level segmentation of the multispectral images. We describe the algorithms involved, giving examples for a test site in Fairfield (Sydney)

    Geometric potential of cartosat-1 stereo imagery

    Get PDF
    Cartosat-1 satellite, launched by Department of Space (DOS), Government of India, is dedicated to stereo viewing for large scale mapping and terrain modelling applications. This stereo capability fills the limited capacity of very high resolution satellites for three-dimensional point determination and enables the generation of detailed digital elevation models (DEMs) not having gaps in mountainous regions like for example the SRTM height model.The Cartosat-1 sensor offers a resolution of 2.5m GSD in panchromatic mode. One CCD-line sensor camera is looking with a nadir angle of 26' in forward direction, the other 5' aft along the track. The Institute "Area di Geodesia e Geomatica"-Sapienza Università di Roma and the Institute of Photogrammetry and Geoinformation, Leibniz University Hannover participated at the ISPRS-ISRO Cartosat-1 Scientific Assessment Programme (CSAP), in order to investigate the generation of Digital Surface Models (DSMs) from Cartosat-1 stereo scenes. The aim of this work concerns the orientation of Cartosat-1 stereo pairs, using the given RPCs improved by control points and the definition of an innovative model based on geometric reconstruction, that is used also for the RPC extraction utilizing a terrain independent approach. These models are implemented in the scientific software (SISAR-Software per Immagini Satellitari ad Alta Risoluzione) developed at Sapienza Università di Roma. In this paper the SISAR model is applied to different stereo pairs (Castelgandolfo and Rome) and to point out the effectiveness of the new model, SISAR results are compared with the corresponding ones obtained by the software OrthoEngine 10.0 (PCI Geomatica).By the University of Hannover a similar general satellite orientation program has been developed and the good results, achieved by bias corrected sensor oriented RPCs, for the test fields Mausanne (France) and Warsaw (Poland) have been described.For some images, digital height models have been generated by automatic image matching with least squares method, analysed in relation to given reference height models. For the comparison with the reference DEMs the horizontal fit of the height models to each other has been checked by adjustment

    Fusion of aerial images and sensor data from a ground vehicle for improved semantic mapping

    Get PDF
    This work investigates the use of semantic information to link ground level occupancy maps and aerial images. A ground level semantic map, which shows open ground and indicates the probability of cells being occupied by walls of buildings, is obtained by a mobile robot equipped with an omnidirectional camera, GPS and a laser range finder. This semantic information is used for local and global segmentation of an aerial image. The result is a map where the semantic information has been extended beyond the range of the robot sensors and predicts where the mobile robot can find buildings and potentially driveable ground

    Enhancment of dense urban digital surface models from VHR optical satellite stereo data by pre-segmentation and object detection

    Get PDF
    The generation of digital surface models (DSM) of urban areas from very high resolution (VHR) stereo satellite imagery requires advanced methods. In the classical approach of DSM generation from stereo satellite imagery, interest points are extracted and correlated between the stereo mates using an area based matching followed by a least-squares sub-pixel refinement step. After a region growing the 3D point list is triangulated to the resulting DSM. In urban areas this approach fails due to the size of the correlation window, which smoothes out the usual steep edges of buildings. Also missing correlations as for partly – in one or both of the images – occluded areas will simply be interpolated in the triangulation step. So an urban DSM generated with the classical approach results in a very smooth DSM with missing steep walls, narrow streets and courtyards. To overcome these problems algorithms from computer vision are introduced and adopted to satellite imagery. These algorithms do not work using local optimisation like the area-based matching but try to optimize a (semi-)global cost function. Analysis shows that dynamic programming approaches based on epipolar images like dynamic line warping or semiglobal matching yield the best results according to accuracy and processing time. These algorithms can also detect occlusions – areas not visible in one or both of the stereo images. Beside these also the time and memory consuming step of handling and triangulating large point lists can be omitted due to the direct operation on epipolar images and direct generation of a so called disparity image fitting exactly on the first of the stereo images. This disparity image – representing already a sort of a dense DSM – contains the distances measured in pixels in the epipolar direction (or a no-data value for a detected occlusion) for each pixel in the image. Despite the global optimization of the cost function many outliers, mismatches and erroneously detected occlusions remain, especially if only one stereo pair is available. To enhance these dense DSM – the disparity image – a pre-segmentation approach is presented in this paper. Since the disparity image is fitting exactly on the first of the two stereo partners (beforehand transformed to epipolar geometry) a direct correlation between image pixels and derived heights (the disparities) exist. This feature of the disparity image is exploited to integrate additional knowledge from the image into the DSM. This is done by segmenting the stereo image, transferring the segmentation information to the DSM and performing a statistical analysis on each of the created DSM segments. Based on this analysis and spectral information a coarse object detection and classification can be performed and in turn the DSM can be enhanced. After the description of the proposed method some results are shown and discussed

    DATA FUSION OF LIDAR INTO A REGION GROWING STEREO ALGORITHM

    Get PDF
    corecore