695 research outputs found

    Methods of visualisation

    Get PDF

    Metric remote sensing experiments in preparation for Spacelab flights

    Get PDF
    Aerial and ground photographs of Wallis mountains and of Dolomiti di Cortina d'Ampezzo in Italy were made using spectrozonal emulsions and optical multichannel filters. A metric camera was used in the perspective of the first Spacelab flight aboard the space shuttle. Elementary forms of alpine geomorphology and ice or snow phenomena are detectable on these metric scenes

    From eye to machine: shifting authority in color measurement

    Get PDF
    Given a subject so imbued with contention and conflicting theoretical stances, it is remarkable that automated instruments ever came to replace the human eye as sensitive arbiters of color specification. Yet, dramatic shifts in assumptions and practice did occur in the first half of the twentieth century. How and why was confidence transferred from careful observers to mechanized devices when the property being measured – color – had become so closely identified with human physiology and psychology? A fertile perspective on the problem is via the history of science and technology, paying particular attention to social groups and disciplinary identity to determine how those factors affected their communities’ cognitive territory. There were both common and discordant threads motivating the various technical groups that took on the problems of measuring light and color from the late nineteenth century onwards, and leading them towards the development of appropriate instruments for themselves. The transition from visual to photoelectric methods <i>could</i> be portrayed as a natural evolution, replacing the eye by an alternative roviding more sensitivity and convenience – indeed, this is the conventional positivist view propounded by technical histories. However, the adoption of new measurement technologies seldom is simple, and frequently has a significant cultural component. Beneath this slide towards automation lay a raft of implicit assumptions about objectivity, the nature of the observer, the role of instruments, and the trade-offs between standardization and descriptive power. While espousing rational arguments for a physical detector of color, its proponents weighted their views with tacit considerations. The reassignment of trust from the eye to automated instruments was influenced as much by the historical context as by intellectual factors. I will argue that several distinct aspects were involved, which include the reductive view of color provided by the trichromatic theory; the impetus provided by its association with photometry; the expanding mood for a quantitative and objective approach to scientific observation; and, the pressures for commercial standardization. As suggested by these factors, there was another shift of authority at play: from one technical specialism to another. The regularization of color involved appropriation of the subject by a particular set of social interests: communities of physicists and engineers espousing a ‘physicalist’ interpretation, rather than psychologists and physiologists for whom color was conceived as a more complex phenomenon. Moreover, the sources for automated color measurement, and instrumentation for measuring color, were primarily from the industrial sphere rather than from academic science. To understand these shifts, then, this chapter explores differing views of the importance of observers, machines and automation

    Human factors considerations for the use of color in display systems

    Get PDF
    Identified and assessed are those human factor considerations impacting an operator's ability to perform when information is displayed in color as contrasted to monochrome (black and white only). The findings provide valuable guidelines for the assessment of the advantages (and disadvantages) of using a color display system. The use of color provides an additional sensory channel (color perception) which is not available with black and white. The degree to which one can exploit the use of this channel is highly dependent on available display technology, mission information display requirements, and acceptable operational modes

    Differentiable Display Photometric Stereo

    Full text link
    Photometric stereo leverages variations in illumination conditions to reconstruct per-pixel surface normals. The concept of display photometric stereo, which employs a conventional monitor as an illumination source, has the potential to overcome limitations often encountered in bulky and difficult-to-use conventional setups. In this paper, we introduce Differentiable Display Photometric Stereo (DDPS), a method designed to achieve high-fidelity normal reconstruction using an off-the-shelf monitor and camera. DDPS addresses a critical yet often neglected challenge in photometric stereo: the optimization of display patterns for enhanced normal reconstruction. We present a differentiable framework that couples basis-illumination image formation with a photometric-stereo reconstruction method. This facilitates the learning of display patterns that leads to high-quality normal reconstruction through automatic differentiation. Addressing the synthetic-real domain gap inherent in end-to-end optimization, we propose the use of a real-world photometric-stereo training dataset composed of 3D-printed objects. Moreover, to reduce the ill-posed nature of photometric stereo, we exploit the linearly polarized light emitted from the monitor to optically separate diffuse and specular reflections in the captured images. We demonstrate that DDPS allows for learning display patterns optimized for a target configuration and is robust to initialization. We assess DDPS on 3D-printed objects with ground-truth normals and diverse real-world objects, validating that DDPS enables effective photometric-stereo reconstruction

    Individual Facial Coloration in Male Eulemur fulvus rufus: A Condition-dependent Ornament?

    Get PDF
    Researchers studying individual variation in conspicuous skin coloration in primates have suggested that color indicates male quality. Although primate fur color can also be flamboyant, the potential condition dependence and thus signaling function of fur remains poorly studied. We studied sources of variation in sexually dichromatic facial hair coloration in red-fronted lemurs (Eulemur fulvus rufus). We collected data on 13 adult males in Kirindy Forest, Madagascar, during two study periods in 2006 and 2007, to determine whether variation in facial hair coloration correlates with male age, rank, androgen status, and reproductive success. We quantified facial hair coloration via standardized digital photographs of each male, assessed androgen status using fecal hormone measurements, and obtained data on reproductive success through genetic paternity analyses. Male facial hair coloration showed high individual variation, and baseline coloration was related to individual androgen status but not to any other parameter tested. Color did not reflect rapid androgen changes during the mating season. However, pronounced long-term changes in androgen levels between years were accompanied by changes in facial hair coloration. Our data suggest that facial hair coloration in red-fronted lemur males is under proximate control of androgens and may provide some information about male quality, but it does not correlate with dominance rank or male reproductive success

    The Land Experiments in Colour Vision - Colour as a Physical, Phenomenological and Synthetic Object

    Get PDF
    This thesis analyses the historical and intellectual context of Edwin Land’s experiments in colour vision. I argue that the colour vision research program and retinex theory developed by Land and his colleagues provided a satisfying synthesis of two divergent schools in the history of colour science. The first chapter of this thesis establishes the existence of the “physical” school of colour science. The defining feature of this school was the belief in the colour atomism hypothesis. This is the idea that the colour perceived at a point in the visual field is completely determined by the physical properties of the light rays entering the retina at that point. In other words, there is a one-to-one correspondence between the physical properties of light rays and colour sensation at a point in the visual field. The second chapter establishes the existence of the “phenomenological” school of colour science. The defining feature of this school was the discovery of colour phenomena which could not be accounted for by the colour atomism hypothesis. Among these phenomena were “coloured shadows”, “simultaneous colour contrast”, and “colour constancy”. The third chapter shows how Land’s colour vision research program and retinex theory reconciled these two schools. Land and his colleagues demonstrated that the colour atomism hypothesis is a special case, valid only for points of light. The colour phenomena studied by the “phenomenological” school could be predicted by a computational model – retinex theory – which accounted for colour as it is perceived over a wide visual field, rather than simply at single points. In this process, Land and colleagues built up a new understanding of colour vision as a practical utility evolved for the organism, designed to achieve colour constancy

    The construction of colorimetry by committee

    Get PDF
    This paper explores the confrontation of physical and contextual factors involved in the emergence of the subject of color measurement, which stabilized in essentially its present form during the interwar period. The contentions surrounding the specialty had both a national and a disciplinary dimension. German dominance was curtailed by American and British contributions after World War I. Particularly in America, communities of physicists and psychologists had different commitments to divergent views of nature and human perception. They therefore had to negotiate a compromise between their desire for a quantitative system of description and the perceived complexity and human-centeredness of color judgement. These debates were played out not in the laboratory but rather in institutionalized encounters on standards committees. Groups such as this constitute a relatively unexplored historiographic and social site of investigation. The heterogeneity of such committees, and their products, highlight the problems of identifying and following such ephemeral historical 'actors'

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided
    corecore