17,498 research outputs found

    A generalization of the Subspace Theorem with polynomials of higher degree

    Full text link
    Recently, Corvaja and Zannier obtained an extension of the Subspace Theorem with arbitrary homogeneous polynomials of arbitrary degreee instead of linear forms. Their result states that the set of solutions in P^n(K) (K number field) of the inequality being considered is not Zariski dense. In our paper we prove by a different method a generalization of their result, in which the solutions are taken from an arbitrary projective variety X instead of P^n. Further, we give a quantitative version which states in a precise form that the solutions with large height lie ina finite number of proper subvarieties of X, with explicit upper bounds for the number and for the degrees of these subvarieties.Comment: 31 page

    Some generalizations of Schmidt's subspace theorem

    Full text link
    The aim of this paper is twofold. The first is to give a quantitative version of Schmidt's subspace theorem for arbitrary families of higher degree polynomials. The second is to give a generalization of the subspace theorem for arbitrary families of closed subschemes in algebraic projective varieties.Comment: In this version, some typos are corrected and the references list is modified. The paper consists of 17 pages. arXiv admin note: substantial text overlap with arXiv:1808.10286; text overlap with arXiv:math/0408381, arXiv:1910.07966 by other author

    Algebraic List-decoding of Subspace Codes

    Full text link
    Subspace codes were introduced in order to correct errors and erasures for randomized network coding, in the case where network topology is unknown (the noncoherent case). Subspace codes are indeed collections of subspaces of a certain vector space over a finite field. The Koetter-Kschischang construction of subspace codes are similar to Reed-Solomon codes in that codewords are obtained by evaluating certain (linearized) polynomials. In this paper, we consider the problem of list-decoding the Koetter-Kschischang subspace codes. In a sense, we are able to achieve for these codes what Sudan was able to achieve for Reed-Solomon codes. In order to do so, we have to modify and generalize the original Koetter-Kschischang construction in many important respects. The end result is this: for any integer LL, our list-LL decoder guarantees successful recovery of the message subspace provided that the normalized dimension of the error is at most L−L(L+1)2R L - \frac{L(L+1)}{2}R where RR is the normalized packet rate. Just as in the case of Sudan's list-decoding algorithm, this exceeds the previously best known error-correction radius 1−R1-R, demonstrated by Koetter and Kschischang, for low rates RR

    Cyclic tridiagonal pairs, higher order Onsager algebras and orthogonal polynomials

    Get PDF
    The concept of cyclic tridiagonal pairs is introduced, and explicit examples are given. For a fairly general class of cyclic tridiagonal pairs with cyclicity N, we associate a pair of `divided polynomials'. The properties of this pair generalize the ones of tridiagonal pairs of Racah type. The algebra generated by the pair of divided polynomials is identified as a higher-order generalization of the Onsager algebra. It can be viewed as a subalgebra of the q-Onsager algebra for a proper specialization at q the primitive 2Nth root of unity. Orthogonal polynomials beyond the Leonard duality are revisited in light of this framework. In particular, certain second-order Dunkl shift operators provide a realization of the divided polynomials at N=2 or q=i.Comment: 32 pages; v2: Appendices improved and extended, e.g. a proof of irreducibility is added; v3: version for Linear Algebra and its Applications, one assumption added in Appendix about eq. (A.2

    Direction problems in affine spaces

    Full text link
    This paper is a survey paper on old and recent results on direction problems in finite dimensional affine spaces over a finite field.Comment: Academy Contact Forum "Galois geometries and applications", October 5, 2012, Brussels, Belgiu

    Quasi-Exact Solvability and the direct approach to invariant subspaces

    Full text link
    We propose a more direct approach to constructing differential operators that preserve polynomial subspaces than the one based on considering elements of the enveloping algebra of sl(2). This approach is used here to construct new exactly solvable and quasi-exactly solvable quantum Hamiltonians on the line which are not Lie-algebraic. It is also applied to generate potentials with multiple algebraic sectors. We discuss two illustrative examples of these two applications: an interesting generalization of the Lam\'e potential which posses four algebraic sectors, and a quasi-exactly solvable deformation of the Morse potential which is not Lie-algebraic.Comment: 17 pages, 3 figure
    • …
    corecore