18 research outputs found

    Perspective: a dynamics-based classification of ventricular arrhythmias

    Get PDF
    Despite key advances in the clinical management of life-threatening ventricular arrhythmias, culminating with the development of implantable cardioverter-defibrillators and catheter ablation techniques, pharmacologic/biologic therapeutics have lagged behind. The fundamental issue is that biological targets are molecular factors. Diseases, however, represent emergent properties at the scale of the organism that result from dynamic interactions between multiple constantly changing molecular factors. For a pharmacologic/biologic therapy to be effective, it must target the dynamic processes that underlie the disease. Here we propose a classification of ventricular arrhythmias that is based on our current understanding of the dynamics occurring at the subcellular, cellular, tissue and organism scales, which cause arrhythmias by simultaneously generating arrhythmia triggers and exacerbating tissue vulnerability. The goal is to create a framework that systematically links these key dynamic factors together with fixed factors (structural and electrophysiological heterogeneity) synergistically promoting electrical dispersion and increased arrhythmia risk to molecular factors that can serve as biological targets. We classify ventricular arrhythmias into three primary dynamic categories related generally to unstable Ca cycling, reduced repolarization, and excess repolarization, respectively. The clinical syndromes, arrhythmia mechanisms, dynamic factors and what is known about their molecular counterparts are discussed. Based on this framework, we propose a computational-experimental strategy for exploring the links between molecular factors, fixed factors and dynamic factors that underlie life-threatening ventricular arrhythmias. The ultimate objective is to facilitate drug development by creating an in silico platform to evaluate and predict comprehensively how molecular interventions affect not only a single targeted arrhythmia, but all primary arrhythmia dynamics categories as well as normal cardiac excitation-contraction coupling

    Investigating a novel intramyocardial delivery method for induced pluripotent stem cell-derived cardiomyocytes

    Get PDF
    Cell therapy is a potential novel treatment for cardiac regeneration and numerous studies have attempted to transplant cells to regenerate the myocardium lost during myocardial infarction. To date, only minimal improvements to cardiac function have been reported. This is likely to occur from low cell retention following delivery and high cell death after transplantation. The thesis aimed to improve the delivery and engraftment of viable cells by using an injectable biomaterial which provides an implantable, biodegradable substrate for attachment and growth of cardiomyocytes derived from induced pluripotent stem cells (iPSC). The thesis describes the fabrication and characterisation of Thermally Induced Phase Separation (TIPS) microspheres, and functionalisation of the microspheres to enable cell attachment in xeno-free conditions. The selected formulation resulted in iPSC attachment, expansion, and retention of pluripotent phenotype. Differentiation of iPSC into cardiomyocytes was investigated and characterised, comparing in vitro culture to microsphere culture using flow cytometry, immunocytochemistry and western blotting techniques. Microsphere culture was shown to be protective against anoikis and compatible for injectable delivery. The in vivo compatibility of the microspheres was assessed using pre-clinical murine models. The microspheres were rendered trackable, using the computed tomography contrast agent barium sulphate, to assess the distribution after ultra-sound guided intramyocardial injections for targeted delivery. The findings suggest that barium sulphate-loaded microspheres can be used as a novel tool for optimising delivery techniques and tracking persistence and distribution of implanted products. Once in vivo compatibility was established, a cellularised microsphere formulation was delivered to the myocardium of immunocompromised mice, to compare the efficacy of biomaterial assisted versus suspension cell therapy. This work demonstrates that TIPS microcarriers offer a supporting matrix for culturing iPSC and iPSC derived cardiomyocytes in vitro and when implanted in vivo have the potential to be developed into an injectable biomaterial for cardiac regeneration

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Simulating the Effect of Global Cardiac Ischaemia on the Dynamics of Ventricular Arrhythmias in the Human Heart

    Get PDF
    Cardiac arrhythmias are significant causes of death in the world, and ventricular fibrillation is a very dangerous type of cardiac arrhythmia. Global myocardial ischemia is a consequence of ventricular fibrillation (VF) and has been shown to change the dynamic behaviour of activation waves on the heart. The aim of this thesis is to use computational models to study the behaviour of re-entry in the human ventricles when the heart becomes globally ischaemic. The effects of two ischaemic components (hyperkalaemia and hypoxia) on spiral wave re-entry behaviour in two dimensional (2D) ventricular tissue using two ventricular action potential (AP) models were simulated (Ten Tusscher et al. 2006 (TP06) and O鈥橦ara et al. 2011 (ORd)). A three dimensional (3D) model of the human ventricles is used to examine the influence of each ischaemic component on the stability of ventricular fibrillation. Firstly, the main ventricular AP models relevant to this thesis are reviewed. Then, the current-voltage properties of four different IK(ATP) formulations are examined to assess which formulation was more appropriate to simulate hypoxia/ischaemia. Secondly, how the formulation of IK(ATP) influences cell excitability and AP duration (APD) in models of human ventricular myocytes is studied. Finally, mechanisms underlying ventricular arrhythmia generation under the conditions of ischaemia are investigated

    Planification de l鈥檃blation radiofr茅quence des arythmies cardiaques en combinant mod茅lisation et apprentissage automatique

    Get PDF
    Cardiac arrhythmias are heart rhythm disruptions which can lead to sudden cardiac death. They require a deeper understanding for appropriate treatment planning. In this thesis, we integrate personalized structural and functional data into a 3D tetrahedral mesh of the biventricular myocardium. Next, the Mitchell-Schaeffer (MS) simplified biophysical model is used to study the spatial heterogeneity of electrophysiological (EP) tissue properties and their role in arrhythmogenesis. Radiofrequency ablation (RFA) with the elimination of local abnormal ventricular activities (LAVA) has recently arisen as a potentially curative treatment for ventricular tachycardia but the EP studies required to locate LAVA are lengthy and invasive. LAVA are commonly found within the heterogeneous scar, which can be imaged non-invasively with 3D delayed enhanced magnetic resonance imaging (DE-MRI). We evaluate the use of advanced image features in a random forest machine learning framework to identify areas of LAVA-inducing tissue. Furthermore, we detail the dataset鈥檚 inherent error sources and their formal integration in the training process. Finally, we construct MRI-based structural patient-specific heart models and couple them with the MS model. We model a recording catheter using a dipole approach and generate distinct normal and LAVA-like electrograms at locations where they have been found in clinics. This enriches our predictions of the locations of LAVA-inducing tissue obtained through image-based learning. Confidence maps can be generated and analyzed prior to RFA to guide the intervention. These contributions have led to promising results and proofs of concepts.Les arythmies sont des perturbations du rythme cardiaque qui peuvent entrainer la mort subite et requi猫rent une meilleure compr茅hension pour planifier leur traitement. Dans cette th猫se, nous int茅grons des donn茅es structurelles et fonctionnelles 脿 un maillage 3D t茅tra茅drique biventriculaire. Le mod猫le biophysique simplifi茅 de Mitchell-Schaeffer (MS) est utilis茅 pour 茅tudier l鈥檋茅t茅rog茅n茅it茅 des propri茅t茅s 茅lectrophysiologiques (EP) du tissu et leur r么le sur l鈥檃rythmog茅n猫se. L鈥檃blation par radiofr茅quence (ARF) en 茅liminant les activit茅s ventriculaires anormales locales (LAVA) est un traitement potentiellement curatif pour la tachycardie ventriculaire, mais les 茅tudes EP requises pour localiser les LAVA sont longues et invasives. Les LAVA se trouvent autour de cicatrices h茅t茅rog猫nes qui peuvent 锚tre imag茅es de fa莽on non-invasive par IRM 脿 rehaussement tardif. Nous utilisons des caract茅ristiques d鈥檌mage dans un contexte d鈥檃pprentissage automatique avec des for锚ts al茅atoires pour identifier des aires de tissu qui induisent des LAVA. Nous d茅taillons les sources d鈥檈rreur inh茅rentes aux donn茅es et leur int茅gration dans le processus d鈥檃pprentissage. Finalement, nous couplons le mod猫le MS avec des g茅om茅tries du coeur sp茅cifiques aux patients et nous mod茅lisons le cath茅ter avec une approche par un dip么le pour g茅n茅rer des 茅lectrogrammes normaux et des LAVA aux endroits o霉 ils ont 茅t茅 localis茅s en clinique. Cela am茅liore la pr茅diction de localisation du tissu induisant des LAVA obtenue par apprentissage sur l鈥檌mage. Des cartes de confiance sont g茅n茅r茅es et peuvent 锚tre utilis茅es avant une ARF pour guider l鈥檌ntervention. Les contributions de cette th猫se ont conduit 脿 des r茅sultats et des preuves de concepts prometteurs

    Doctor of Philosophy

    Get PDF
    dissertationDiffusion tensor MRI (DT-MRI or DTI) has been proven useful for characterizing biological tissue microstructure, with the majority of DTI studies having been performed previously in the brain. Other studies have shown that changes in DTI parameters are detectable in the presence of cardiac pathology, recovery, and development, and provide insight into the microstructural mechanisms of these processes. However, the technical challenges of implementing cardiac DTI in vivo, including prohibitive scan times inherent to DTI and measuring small-scale diffusion in the beating heart, have limited its widespread usage. This research aims to address these technical challenges by: (1) formulating a model-based reconstruction algorithm to accurately estimate DTI parameters directly from fewer MRI measurements and (2) designing novel diffusion encoding MRI pulse sequences that compensate for the higher-order motion of the beating heart. The model-based reconstruction method was tested on undersampled DTI data and its performance was compared against other state-of-the-art reconstruction algorithms. Model-based reconstruction was shown to produce DTI parameter maps with less blurring and noise and to estimate global DTI parameters more accurately than alternative methods. Through numerical simulations and experimental demonstrations in live rats, higher-order motion compensated diffusion-encoding was shown to successfully eliminate signal loss due to motion, which in turn produced data of sufficient quality to accurately estimate DTI parameters, such as fiber helix angle. Ultimately, the model-based reconstruction and higher-order motion compensation methods were combined to characterize changes in the cardiac microstructure in a rat model with inducible arterial hypertension in order to demonstrate the ability of cardiac DTI to detect pathological changes in living myocardium

    Doctor of Philosophy

    Get PDF
    dissertationComputational simulation has become an indispensable tool in the study of both basic mechanisms and pathophysiology of all forms of cardiac electrical activity. Because the heart is comprised of approximately 4 billion electrically active cells, it is not possible to geometrically model or computationally simulate each individual cell. As a result computational models of the heart are, of necessity, abstractions that approximate electrical behavior at the cell, tissue, and whole body level. The goal of this PhD dissertation was to evaluate several aspects of these abstractions by exploring a set of modeling approaches in the field of cardiac electrophysiology and to develop means to evaluate both the amplitude of these errors from a purely technical perspective as well as the impacts of those errors in terms of physiological parameters. The first project used subject specific models and experiments with acute myocardial ischemia to show that one common simplification used to model myocardial ischemia-the simplest form of the border zone between healthy and ischemic tissue-was not supported by the experimental results. We propose a alternative approximation of the border zone that better simulates the experimental results. The second study examined the impact of simplifications in geometric models on simulations of cardiac electrophysiology. Such models consist of a connected mesh of polygonal elements and must often capture complex external and internal boundaries. A conforming mesh contains elements that follow closely the shapes of boundaries; nonconforming meshes fit the boundaries only approximately and are easier to construct but their impact on simulation accuracy has, to our knowledge, remained unknown. We evaluated the impact of this simplification on a set of three different forms of bioelectric field simulations. The third project evaluated the impact of an additional geometric modeling error; positional uncertainty of the heart in simulations of the ECG. We applied a relatively novel and highly efficient statistical approach, the generalized Polynomial Chaos-Stochastic Collocation method (gPC-SC), to a boundary element formulation of the electrocardiographic forward problem to carry out the necessary comprehensive sensitivity analysis. We found variations large enough to mask or to mimic signs of ischemia in the ECG

    A Multiscale in Silico Study to Characterize the Atrial Electrical Activity of Patients With Atrial Fibrillation. A Translational Study to Guide Ablation Therapy

    Get PDF
    [ES] La fibrilaci贸n auricular es la arritmia card铆aca m谩s com煤n. Durante la fibrilaci贸n auricular, el sustrato auricular sufre una serie de cambios o remodelados a nivel el茅ctrico y estructural. La remodelaci贸n el茅ctrica se caracteriza por la alteraci贸n de una serie de canales i贸nicos, lo que cambia la morfolog铆a del potential de transmembrana conocido como potencial de acci贸n. La remodelaci贸n estructural es un proceso complejo que involucra la interacci贸n de varios procesos de se帽alizaci贸n, interacci贸n celular y cambios en la matriz extracelular. Durante la remodelaci贸n estructural, los fibroblastos que abundan en el tejido card铆aco, comienzan a diferenciarse en miofibroblastos que son los encargados de mantener la estructura de la matriz extracelular depositando col谩geno. Adem谩s, la se帽alizaci贸n paracrina de los miofibroblastos afecta a los canales i贸nicos de los miocitos circundantes. Se utilizaron modelos computacionales muy detallados a diferentes escalas para estudiar la remodelaci贸n estructural inducida a nivel celular y tisular. Se realiz贸 una adaptaci贸n de un modelo de fibroblastos humanos a nivel celular para reproducir la electrofisiolog铆a de los miofibroblastos durante la fibrilaci贸n auricular. Adem谩s, se evalu贸 la exploraci贸n de la interacci贸n del calcio en la electrofisiolog铆a de los miofibroblastos ajustando el canal de calcio a los datos experimentales. A nivel tisular, se estudi贸 la infiltraci贸n de miofibroblastos para cuantificar el aumento de vulnerabilidad a una arritmia card铆aca. Los miofibroblastos cambian la din谩mica de la reentrada. Una baja densidad de miofibroblastos permite la propagaci贸n a trav茅s del 谩rea fibr贸tica y crea puntos de salida de actividad focal y roturas de ondas dentro de esta 谩rea. Adem谩s, las composiciones de fibrosis juegan un papel clave en la alteraci贸n del patr贸n de propagaci贸n. La alteraci贸n del patr贸n de propagaci贸n afecta a los electrogramas recogidos en la superficie del tejido. La morfolog铆a del electrograma se alter贸 dependiendo de la disposici贸n y composici贸n del tejido fibr贸tico. Se combinaron modelos detallados de tejido card铆aco con modelos realistas de los cat茅teres de mapeo disponibles comercialmente para comprender las se帽ales registradas cl铆nicamente. Se gener贸 un modelo de ruido a partir de se帽ales cl铆nicas para reproducir los artefactos de se帽al en el modelo. Se utilizaron electrogramas de modelos de dos dominios altamente detallados para entrenar un algoritmo de aprendizaje autom谩tico para caracterizar el sustrato fibr贸tico auricular. Las caracter铆sticas que cuantifican la complejidad de las se帽ales fueron extra铆das para identificar la densidad fibr贸tica y la transmuralidad fibr贸tica. Posteriormente, se generaron mapas de fibrosis utilizando el registro del paciente como prueba de concepto. El mapa de fibrosis proporciona informaci贸n sobre el sustrato fibr贸tico sin utilizar un valor 煤nico de corte de 0,5 milivoltios. Adem谩s, utilizando la medici贸n del flujo de informaci贸n como la entrop铆a de transferencia combinada con gr谩ficos dirigidos, en este estudio, se sigui贸 la direcci贸n de propagaci贸n del frente de onda. La transferencia de entrop铆a con gr谩ficos dirigidos proporciona informaci贸n crucial durante la electrofisiolog铆a para comprender la din谩mica de propagaci贸n de ondas durante la fibrilaci贸n auricular. En conclusi贸n, esta tesis presenta un estudio in silico multiescala que proporciona informaci贸n sobre los mediadores celulares responsables de la remodelaci贸n de la matriz extracelular y su electrofisiolog铆a. Adem谩s, proporciona una configuraci贸n realista para crear datos in silico que pueden ser usados para aplicaciones cl铆nicas y servir de soporte al tratamiento de ablaci贸n.[CA] La fibril路laci贸 auricular 茅s l'arr铆tmia card铆aca m茅s freq眉ent, en la qual el substrat auricular patix una s猫rie de remodelacions el猫ctriques i estructurals. La remodelaci贸 de tipus el猫ctric es caracteritza per l'alteraci贸 d'un conjunt de canals i貌nics que modifica la morfologia del voltatge transmembrana, conegut com a potencial d'acci贸. La remodelaci贸 estructural 茅s un fenomen complex que implica la relaci贸 entre diversos processos de senyalitzaci贸, interaccions cel路lulars i canvis en la matriu extracel路lular. Durant la remodelaci贸 estructural, els abundants fibroblasts presents en el teixit card铆ac comencen a diferenciar-se en miofibroblasts, els quals s'encarreguen de mantenir l'estructura de la matriu extracel路lular dipositant-hi col路lagen. A m茅s, la senyalitzaci贸 paracrina dels miofibroblasts amb els mi貌cits circumdants tamb茅 afectar脿 els canals i貌nics. Es van utilitzar models computacionals molt detallats a diferents escales per estudiar la remodelaci贸 estructural indu茂da a nivell tissular i cel路lular. Es va fer una adaptaci贸 a nivell cel路lular d'un model de fibroblasts humans per reproduir-hi l'electrofisiologia dels miofibroblasts durant la fibril路laci贸 auricular. A m茅s, l'exploraci贸 de la interacci贸 del calci amb l'electrofisiologia dels miofibroblasts va ser avaluada mitjan莽ant l'adequaci贸 del canal de calci a les dades experimentals. A nivell tissular es va estudiar la infiltraci贸 de miofibroblasts per tal de quantificar l'augment de vulnerabilitat que aix貌 conferia per patir una arr铆tmia card铆aca. Els miofibroblasts canvien la din脿mica de la reentrada, i presentar-ne una baixa densitat permet la propagaci贸 a trav茅s de la zona fibr貌tica, tot creant punts de sortida d'activitat focal i trencaments d'ones dins d'aquesta 脿rea. A m茅s, les composicions de fibrosi tenen un paper clau en l'alteraci贸 del patr贸 de propagaci贸, afectant els electrogrames recollits en la superf铆cie del teixit. La morfologia dels electrogrames es va veure alterada en funci贸 de la disposici贸 i la composici贸 del teixit fibr貌tic. Per comprendre els senyals cl铆nicament registrats es van combinar models detallats de teixits card铆acs amb models realistes dels cat猫ters de cartografia disponibles comercialment. Es va generar un model de soroll a partir de senyals cl铆nics per reproduir-hi els artefactes de senyal. Es van utilitzar electrogrames de models de bidominis molt detallats per entrenar un algoritme d'aprenentatge autom脿tic destinat a caracteritzar el substrat fibr貌tic auricular. Les caracter铆stiques que quantifiquen la complexitat dels senyals van ser extretes per identificar la densitat i transmuralitat fibr貌tica. Posteriorment, es van generar mapes de fibrosi mitjan莽ant la gravaci贸 del pacient com a prova de concepte. El mapa de fibrosi proporciona informaci贸 sobre el substrat fibr貌tic sense utilitzar un sol valor de tensi贸 de tall de 0,5 mV. A m茅s, utilitzant la mesura del flux d'informaci贸 com l'entropia de transfer猫ncia combinada amb gr脿fics dirigits, en aquest estudi es va fer un seguiment de la direcci贸 de propagaci贸 de l'ona. L'entropia de transfer猫ncia amb gr脿fics dirigits proporciona informaci贸 crucial durant l'electrofisiologia per entendre la din脿mica de propagaci贸 d'ones durant la fibril路laci贸 auricular. En conclusi贸, aquesta tesi presenta un estudi multi-escala in silico que proporciona informaci贸 sobre els mediadors cel路lulars responsables de la remodelaci贸 de la matriu extracel路lular i la seva electrofisiologia. A m茅s, proporciona una configuraci贸 realista per crear dades in silico que es poden traduir a aplicacions cl铆niques que puguen donar suport al tractament de l'ablaci贸.[EN] Atrial fibrillation is the most common cardiac arrhythmia. During atrial fibrillation, the atrial substrate undergoes a series of electrical and structural remodeling. The electrical remodeling is characterized by the alteration of specific ionic channels, which changes the morphology of the transmembrane voltage known as action potential. Structural remodeling is a complex process involving the interaction of several signalling pathways, cellular interaction, and changes in the extracellular matrix. During structural remodeling, fibroblasts, abundant in the cardiac tissue, start to differentiate into myofibroblasts, which are responsible for maintaining the extracellular matrix structure by depositing collagen. Additionally, myofibroblasts paracrine signalling with surrounding myocytes will also affect ionic channels. Highly detailed computational models at different scales were used to study the effect of structural remodeling induced at the cellular and tissue levels.At the cellular level, a human fibroblast model was adapted to reproduce the myofibroblast electrophsyiology during atrial fibrillation. Additionally, the calcium handling in myofibroblast electrophysiology was assessed by fitting calcium ion channel to experimental data. At the tissue level, myofibroblasts infiltration was studied to quantify the increase of vulnerability to cardiac arrhythmia. Myofibroblasts alter the dynamics of reentry. A low density of myofibroblasts allows the propagation through the fibrotic area and creates focal activity exit points and wave breaks inside this area. Moreover, fibrosis composition plays a key role in the alteration of the propagation pattern. The alteration of the propagation pattern affects the electrograms computed at the surface of the tissue. Electrogram morphology was altered depending on the arrangement and composition of the fibrotic tissue. Detailed cardiac tissue models were combined with realistic models of the commercially available mapping catheters to understand the clinically recorded signals. A noise model from clinical signals was generated to reproduce the signal artifacts in the model. Electrograms from highly detailed bidomain models were used to train a machine learning algorithm to characterize the atrial fibrotic substrate. Features that quantify the complexity of the signals were extracted to identify fibrotic density and fibrotic transmurality. Subsequently, fibrosis maps were generated using patient recordings as a proof of concept. Fibrosis map provides information about the fibrotic substrate without using a single cut-off voltage value of 0.5 mV. Furthermore, in this study, using information theory measurements such as transfer entropy combined with directed graphs, the wave propagation direction was tracked. Transfer entropy with directed graphs provides crucial information during electrophysiology to understand wave propagation dynamics during atrial fibrillation. In conclusion, this thesis presents a multiscale in silico study atrial fibrillation mechanisms providing insight into the cellular mediators responsible for the extracellular matrix remodeling and its electrophysiology. Additionally, it provides a realistic setup to create in silico data that can be translated to clinical applications that could support ablation treatment.S谩nchez Arciniegas, JP. (2021). A Multiscale in Silico Study to Characterize the Atrial Electrical Activity of Patients With Atrial Fibrillation. A Translational Study to Guide Ablation Therapy [Tesis doctoral]. Universitat Polit猫cnica de Val猫ncia. https://doi.org/10.4995/Thesis/10251/171456TESI
    corecore