22 research outputs found

    Effects of Thermal Diffusion and Radiation on Magnetohydrodynamic (MHD) Chemically Reacting Fluid Flow Past a Vertical Plate in a Slip Flow Regime

    Get PDF
    An analysis has been conceded to study the effects of Soret and thermal radiation effects on the magnetohydrodynamic convective flow of a viscous, incompressible, electrically conducting fluid with heat and mass transfer over a plate with time-dependent suction velocity in a slip flow regime in the presence of first-order chemical reaction. The slip conditions at the boundaries for the governing flow are taken for the velocity and temperature distributions and a uniform magnetic field of strength is applied normal to the flow direction. The free stream velocity is assumed to be subject to follow an exponentially small perturbation law. Analytical solutions are obtained for velocity, temperature and concentration fields for the governing partial differential equations depending on slip flow boundary circumstances by using the traditional perturbation method

    A numerical study of heat and mass transfer in non-Newtonian nanofluid models.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.A theoretical study of boundary layer flow, heat and mass transport in non-Newtonian nanofluids is presented. Because of the diversity in the physical structure and properties of non-Newtonian fluids, it is not possible to describe their behaviour using a single constitutive model. In the literature, several constitutive models have been proposed to predict the behaviour and rheological properties of non-Newtonian fluids. The question of interest is how the fluid physical parameters affect the boundary layer flow, and heat and mass transfer in various nanofluids. In this thesis, nanofluid models in various geometries and subject to different boundary conditions are constructed and analyzed. A range of fluid models from simple to complex are studied, leading to highly nonlinear and coupled differential equations, which require advanced numerical methods for their solution. This thesis is a conjoin between mathematical modeling of non-Newtonian nanofluid flows and numerical methods for solving differential equations. Some recent spectral techniques for finding numerical solutions of nonlinear systems of differential equations that model fluid flow problems are used. The numerical methods of primary interest are spectral quasilinearization, local linearization and bivariate local linearization methods. Consequently, one of the objectives of this thesis is to test the accuracy, robustness and general validity of these methods. The dependency of heat and mass transfer, and skin friction coefficients on the physical parameters is quantified and discussed. Results show that nanofluids and physical parameters have an important and significant impact on boundary layer flows, and on heat and mass transfer processes.The year on the title page reflects as 2019 on the thesis and differs from that on pages ii to iv which indicates the year 2020

    Computational Fluid Dynamics 2020

    Get PDF
    This book presents a collection of works published in a recent Special Issue (SI) entitled “Computational Fluid Dynamics”. These works address the development and validation of existent numerical solvers for fluid flow problems and their related applications. They present complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics (MHD) phenomena. The applications are wide and range from aerodynamic drag and pressure waves to geometrical blade modification on aerodynamics characteristics of high-pressure gas turbines, hydromagnetic flow arising in porous regions, optimal design of isothermal sloshing vessels to evaluation of (hybrid) nanofluid properties, their control using MHD, and their effect on different modes of heat transfer. Recent advances in numerical, theoretical, and experimental methodologies, as well as new physics, new methodological developments, and their limitations are presented within the current book. Among others, in the presented works, special attention is paid to validating and improving the accuracy of the presented methodologies. This book brings together a collection of inter/multidisciplinary works on many engineering applications in a coherent manner

    Numerical study of convective fluid flow in porous and non-porous media.

    Get PDF
    Ph. D. University of KwaZulu-Natal, Pietermaritzburg 2015.Abstract available in PDF file

    Topics in Magnetohydrodynamics

    Get PDF
    To understand plasma physics intuitively one need to master the MHD behaviors. As sciences advance, gap between published textbooks and cutting-edge researches gradually develops. Connection from textbook knowledge to up-to-dated research results can often be tough. Review articles can help. This book contains eight topical review papers on MHD. For magnetically confined fusion one can find toroidal MHD theory for tokamaks, magnetic relaxation process in spheromaks, and the formation and stability of field-reversed configuration. In space plasma physics one can get solar spicules and X-ray jets physics, as well as general sub-fluid theory. For numerical methods one can find the implicit numerical methods for resistive MHD and the boundary control formalism. For low temperature plasma physics one can read theory for Newtonian and non-Newtonian fluids etc

    Wind-wave interactions, density stratification and double diffusive convection in rotating flows.

    Get PDF
    Doctor of Philosophy in Applied Mathematics.Abstract available in PDF file

    Advanced Topics in Mass Transfer

    Get PDF
    This book introduces a number of selected advanced topics in mass transfer phenomenon and covers its theoretical, numerical, modeling and experimental aspects. The 26 chapters of this book are divided into five parts. The first is devoted to the study of some problems of mass transfer in microchannels, turbulence, waves and plasma, while chapters regarding mass transfer with hydro-, magnetohydro- and electro- dynamics are collected in the second part. The third part deals with mass transfer in food, such as rice, cheese, fruits and vegetables, and the fourth focuses on mass transfer in some large-scale applications such as geomorphologic studies. The last part introduces several issues of combined heat and mass transfer phenomena. The book can be considered as a rich reference for researchers and engineers working in the field of mass transfer and its related topics

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells
    corecore